
Deliverable 2.2
Functional Specification of the Backend

Part 1: Pre-Selection of the Metric Collection Tools

Work Package 2
August 2017

ProfiT-HPC Consortium

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

Abstract
This document will deliver a functional, yet abstract specification for the backend of the toolkit,
which will be developed in the course of this project.

In this part one of the document, a preliminary choice of tools based on Deliverable 2.1 – “Concise
Overview of Performance Metrics and Tools” is investigated. Based on these investigations and
the experiences, the suitability of these tools to use within the context of the toolkit will be
evaluated.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

1/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

Contents

1 Introduction and Rationale 4

2 procfs 6
2.1 Tasks and Metrics . 6
2.2 Benchmark Runs . 8
2.3 Conclusion . 9
2.4 Remarks . 10

3 vmstat 11
3.1 Tasks and Metrics . 11
3.2 Installation and Requirements . 12
3.3 Benchmark Runs . 12
3.4 Conclusion . 12
3.5 Remarks . 12

4 GNU time 13
4.1 Tasks and Metrics . 13
4.2 Benchmark Runs . 13
4.3 Conclusion . 14
4.4 Remarks . 15

5 Sysstat 16
5.1 SAR . 16

5.1.1 Metrics . 16
5.1.2 Benchmark Runs . 17

5.2 pidstat . 18
5.2.1 Metrics . 18
5.2.2 Benchmark Runs . 18

5.3 iostat . 19
5.3.1 Metrics . 19

5.4 Installation and Requirements . 19
5.5 Conclusion . 19
5.6 Remarks . 20

6 Perf 21
6.1 Tasks . 21
6.2 Metrics . 22
6.3 Installation and Requirements . 22
6.4 Benchmark Runs . 22
6.5 Conclusion . 24

7 LIKWID 25
7.1 likwid-perfctr . 25
7.2 likwid-topology . 27
7.3 likwid-pin . 28
7.4 likwid-mpirun . 28
7.5 Benchmark Runs . 28
7.6 Installation and Requirements . 29
7.7 Conclusion . 29

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

2/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

8 Darshan 31
8.1 Tasks and Metrics . 31
8.2 Installation and Requirements . 31
8.3 Benchmark Runs . 31
8.4 Example Output . 32
8.5 Conclusion . 36

9 Intel MPI 37
9.1 Tasks and Metrics . 37
9.2 Installation and Requirements . 37
9.3 Benchmark Runs . 38
9.4 Conclusion . 38

10 Open | SpeedShop 39
10.1 Tasks . 39
10.2 Metrics . 40
10.3 Installation and Requirements . 41
10.4 Benchmark Runs . 42
10.5 Conclusion . 43
10.6 Remarks . 44

11 Metrics Overview 45

12 Conclusion 47

List of Tables 48

A Perf User Space Events 49

B PAPI Events 50

C Hardware Performance Groups and Counters of LIKWID 52

Bibliography 53

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

3/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

1 Introduction and Rationale
This document aims to provide a functional specification of the backend of the developed toolkit.
With this in mind, the main goal is to cover the answer to the questions of what performance
metrics can be retrieved, what tools for which metrics can be used, how these metrics can be
acquired from the output of the tools, and how much overhead is to be expected by using these
tools. These information and the corresponding tool documentations have been gathered through
the study of the available documentations, as well as performing several essential tests and bench-
marks on different (HPC) systems.

Based on the evaluation in Deliverable 2.1 – “Concise Overview of Performance Metrics and
Tools”, the following tools have been chosen in order to perform further investigations.

• The proc filesystem,

• vmstat,

• GNU time,

• Sysstat utilities (including sar, iostat, and pidstat),

• Perf,

• LIKWID,

• Darshan,

• Open | SpeedShop.

After the survey done regarding Tier-2 and Tier-3 infrastructures (Deliverable 1.2 – “Results of
a Survey concerning the Tier-2 and Tier-3 HPC-Infrastructure in Germany”), it has been turned
out that many of these systems have installed and use the Intel MPI library. Therefore it will be
investigated and evaluated here as well.

This document presents the details of the evaluation of these tools, and accordingly, a rec-
ommendation in regard to the choice of underlying tools for the toolkit is made. The evaluation
of the tools underlies several criteria, formulated in the following questions:

1. Do we need root access?

2. Is a daemon necessary?

3. Is the tool usable with MPI / threads?

4. What metrics do I get?

5. What is the overhead?

6. What are the use-cases?

7. How can the tool be integrated?

a) into the batch system
b) for the user

8. Where is the tool available (architecture, OS, . . .)?

9. Does the tool trace / sample?

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

4/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

10. How is the analysis data accessible?

These questions will be answered for the mentioned tool at the end of each tool-specific section.

Unless otherwise mentioned, for the benchmarks and tests the following system has been used:

• CPU: Workstation with Intel i5-6500 CPU (Skylake) at 3.20 GHz (1 socket, 4 cores).

• Memory (RAM): 8 GB.

• Software: GCC 4.8, Open MPI 1.10.

The benchmark test suite consists of the Berlin Quantum ChromoDynamics (BQCD) [1] and
InterleavedOrRandom (IOR) [2] programs. We have run the two benchmarks with and without
using the discussed tool, and compared the timing differences. For the use of toolkit, we set a
limit of 3% added overhead caused by the tool as acceptable. The measured timings with different
number of MPI tasks (if possible) are presented for each tool. The following color legend has
been used for the percentage increase on the runtime for each experiment:

• red: increase in runtime more than 3%,

• orange: increase in runtime less than 3%,

• blue: decrease in runtime.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

5/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

2 procfs

2.1 Tasks and Metrics
The /proc filesystem is a virtual filesystem that serves as an interface to read out or to manipulate
process or system information. In Linux, every process possesses a directory under /proc/pid/,
in which its information and characteristics can be retrieved on demand. Most of the files in this
directory are empty (i.e. they have zero file size) and their information can only retrieved when
the file is explicitly read from the kernel (for example using the less command). In the files
/proc/cpuinfo and /proc/meminfo the static system information about CPU and memory are
stored, respectively. The information stored in the procfs files is node-based.

The following files with their data and metrics are interesting for us:

• /proc/pid/cgroups
Here, the specific information about the used cgroups of task / process ID is stored.

• /proc/pid/stat
This file contains status information about the process PID, which is used for example by
the command ps. The following parameters (which are a selection of all parameters) are
stored in this file:

– PID (process identifier) and PPID (parent process identifier) of the process,
– number of minor and major page faults until now,
– user and system time (measured in clock ticks),
– number of threads spawned in this process (num_threads),
– start time of the process after booting the system (starttime),
– size of the virtual memory of the process in Bytes (vsize),
– resident set size in pages (rss),
– processor ID on which the process ID was located during the last time slice.

• /proc/pid/statm
Returns information about the memory usage (in pages):

– size of the whole process (size). This is the same as vsize in /proc/pid/status.
– Resident set size (the same as VmRss in /proc/pid/status; in kbytes),
– Amount of pages the code area as well as the data and stack area of the program uses
(text, data).

• /proc/pid/status
Provides much of the information of the files /proc/pid/stat and /proc/pid/statm. The
advantage of the representation of the contents in this file is a better readability of the data.
The following data (among others) can be retrieved:

– name of the process or program name,
– PID, PPID,
– state of the process (i.e. running, sleeping, uninterruptible sleep, zombie, traced or

stopped),
– peak of the process virtual memory size (VmPeak; in kbytes),
– size of the virtual memory of the process (VmSize; in kbytes),
– high water mark, i.e. the peak RAM size the process used until now (VmHWM, in kbytes),

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

6/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

– resident set size (VmRSS; in kbytes),
– amount of memory of the data, stack and code area of the process (VmData, VmStk,
VmExe; in kbytes),

– total amount of used swap space (VmSwap; in kbytes),
– number of threads of the process PID,
– voluntary and involuntary context switches.

• /proc/cpuinfo
Contains almost only static information about the CPU cores/hardware threads, such as,

– CPU family, CPU model and model name, stepping, recent frequency of every core
(dynamic feature), L3 cache size, number of cores, CPUID, instruction set architecture,
cache alignment, address size, power management, apicid, number of CPU cores /
hardware threads.

This information can be used to summarize processor properties (for example in the expert
mode).

• /proc/loadavg
This file contains the averaged load information of the last 1, 5 and 15 minutes. The last
number in the file output states the PID of the last created process.

• /proc/meminfo
Contains static and dynamic information about the memory (RAM, virtual memory, swap):

– total RAM memory of the system/node minus a few reserved bits and the amount of
the kernel binary (MemTotal; in kbytes),

– the whole free/unused RAM memory (MemFree; in kbytes),
– active and inactive memory,
– total and free amount of the swap space (swap total, swap free; in kbytes),
– total and used amount of the vmalloc memory (VmallocTotal, VmallocUsed; in

kbytes).

• /proc/stat/
Creates a kernel / system report. For every core / hardware thread on the node we get
information (line cpu(n)) which is also aggregated and summed (line cpu). Node wide
information is also delivered:

– number of clock ticks (USER_Hz, which is on most systems 1/100 of a second) in user,
system, iowait and idle state. Furthermore, the parameters of virtual machines are
listed in this file (time which is used for virtual machines; steal, guest),

– number of context switches (ctxt),
– number of pages which where paged in and paged out (page, not on all systems),
– number of processes that are in the runnable state (procs_running),
– number of processes that are blocked and are waiting for completing IO (procs_-

blocked).

• /proc/vmstat
Contains information about the virtual memory. The following metrics seem to be interest-
ing for us:

– amount of swapped in and swapped out data (over the whole uptime of the worksta-
tion/node; pswpin, pswpout),

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

7/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

– amount of paged in and paged out data (over the whole uptime of the workstation/node;
pgpgin, pgpgout),

– amount of all and major page faults (over the whole uptime of the workstation/node;
pgfault, pgmajfault),

– amount of successful and unsuccessful access to a NUMA node. A NUMA_FOREIGN
follows a NUMA_MISS (see numaset, numa_hit, numa_miss, numa_foreign).

2.2 Benchmark Runs
In every of the two benchmark cases the appropriate program was run with and without reading
procfs ten times and for every time series the arithmetic mean was calculated. In the BQCD
case the runtime was measured by BQCD itself (in front of the slash in Table 1; 3rd and 4th

columns) and by the shell command time (behind the slash in Table 1; 3rd and 4th columns).
The variance was omitted, because of the small deviations between the runtimes of the test runs
(with a maximum deviation of about five percent). In the last column of the table the relative
deviations between the BQCD run without (in front of the slash) and with procfs (behind the
slash) can be found. In the case of the IOR benchmark we only used the single shared file mode
and we only measured the runtime with time, because IOR measures only in whole seconds,
which is too coarse and in general the calculated deviations are therefore too large.

As well as in the BQCD case, the IOR test runs were made successively with one, two and
four processes and these conditions are also valid for the benchmark tests in Chapters 3, 4, 5 and
7.

BQCD and IOR

BQCD was launched with the shell script ./job_proc.sh, which has the following contents (in
this example with four processes):

./job_proc_read.sh &
time -p mpirun -np 4 -bind-to core ./bqcd input.1nodes.1sockets.4cores

in which the Skript job_proc_read.sh contains the measuring procedure:

for i in $(seq 1 60)
do

less /proc/cpuinfo >> output_proc.txt
sleep 0.5

done

It can be seen, that BQCD was started with process binding on a per core basis. Furthermore, for
simplicity, every 0.5 second the cpuinfo file was read out and the output was redirected into a file.
After that the process was suspended for 0.5 seconds. This time interval was chosen in order to
simulate a finer grained measurement than just 1 second. In the IOR case the method is analogous.

In Table 1 the arithmetic means of the different runs with no metric determination with procfs
and with the metric determination with procfs for BQCD and IOR are given in which in the
BQCD case the runtime values are measured by the program and the time shell command.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

8/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

Program MPI tasks Without procfs With procfs Overhead
BQCD 1 29.05/29.19 29.28/29.42 0.79%/0.79%

2 32.28/32.41 32.63/32.77 1.08%/1.13%
4 54.50/54.64 55.21/55.26 1.30%/1.13%

IOR 1 7.43 7.31 -1.62%
2 13.79 13.66 -0.94%
4 26.44 26.30 -0.53%

Table 1: Benchmark results (in seconds) using procfs as performance metric collector for BQCD
and IOR.

It can be seen from Table 1 that in all BQCD cases the relative “instrumented” benchmark times
are not problematic and below the critical value of three percent. The values of IOR with the
metric measurement with procfs are even better than the values of the “uninstrumented” IOR
version. Interestingly, the run with fewer cores is faster than the run with the maximum number
of cores on the workstation. This behavior is still under evaluation.

A problem in using procfs to measure the runtime of an application in the above fashion is,
that waking up and getting into the run state takes longer than for example 0.5 seconds, hence
the measurement will not take part exactly at that time stamp, because the process must after
waking up get into the run state, which needs additional time. As a consequence a problem arises
because of potentially unequaled measuring intervals.

2.3 Conclusion
• Do we need root access?
No.

• Is a daemon necessary?
No.

• Is the tool usable with threads / MPI?
It can be used only node wise but with multithreading and multiprocessing.

• What metrics do I get?
See Section 2.1.

• What is the overhead?
No significant overhead (see Section 2.2).

• What are the use cases?
Performance measurement and monitoring on the node level.

• How is the tool integrable into the batch system?
It could be possible to read out the values of procfs in the prologue and / or epilogue script
and calculate the difference of those values at the end of the job.

• How is the tool integrable for the user?
In our test cases, the reading of the data was done using a background process.

• Where is the tool available (architecture, OS, . . .)?
procfs is part of the Linux kernel and only needs to be mounted.

• Does the tool trace/sample?
Counting and sampling.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

9/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

• How is the analysis data accessible?
The output is on stdout/stderr (depends on the way the information is read out).

2.4 Remarks
The advantage of procfs in comparison to the tools from Sysstat (Section 5) is, that the data can
be theoretically read out with an arbitrary rate and not just at integer timestamps (i.e., with
integer interval lengths). Since most of the data of the Sysstat utilities can be found in procfs as
well, for a fine granular measuring, using procfs seems to be more appropriate.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

10/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

3 vmstat

3.1 Tasks and Metrics
vmstat creates a report about CPU, process, paging, swapping, block IO and disk activity. The
report can be created every specified integer interval value and for a specified number of times
(“infinity” is also possible).

The metrics which are provided by the tool (and which are important for us) are listed below.

• Processes:

– number of processes in the states runnable or waiting for getting CPU time (parameter
r in the output),

– number of processes which are blocked in an uninterruptible sleep (waiting for IO)
(parameter b in the output).

• Memory:

– amount of used virtual memory (parameter swpd; in kbytes),
– amount of free RAM memory (parameter free; in kbytes),
– parameters buff, cache, inact, active (explanation see sar -r).

• Swap:

– amount of memory which was read in / written out (in kbytes per second) from / to
the disc (swap in / swap out).

• IO:

– number of blocks which were read from / written to a block device per second (para-
meters bi and bo).

• CPU:

– user time (including nice time; parameter us),
– system time (parameter sy),
– idle time (parameter id),
– iowait (parameter wa),
– steal (parameter st; see sar -u).

• Reporting selected disk properties and activities (option -D):

– number of disks and partitions,
– amount of the whole read operations,
– merged reads and read sectors,
– time for reading and writing (in milliseconds),
– number of IO operations which are currently in action,
– time spent in IO.

• Reporting selected system properties and activities (option -s):

– total, free and used RAM memory (in kbytes),
– active and inactive memory (in kbytes),

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

11/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

– buffered and cached memory (in kbytes),
– total, used and free amount of swap space (in kbytes),
– amount of interrupts since the system is up,
– number of context switches since the system is up,
– number of paging (in/out) since the system is up.

3.2 Installation and Requirements
In general vmstat is part of the Linux distribution and is “shipped” pre-installed. If the latter is
not the case, it can be installed via the package manager.

3.3 Benchmark Runs
BQCD and IOR

In Table 2 the benchmark results without using vmstat (3rd column) and with using vmstat (4th

column) are listed, while in 5th column the relative deviations are given.

Program MPI tasks Without vmstat With vmstat Overhead
BQCD 1 29.05 / 29.19 29.12 / 29.26 0.24% / 0.24%

2 32.28 / 32.41 32.31 / 32.47 0.09% / 0.19%
4 54.5 / 54.64 54.48 / 54.62 -0.04% / -0.04%

IOR 1 7.43 7.35 -1.08%
2 13.79 13.79 0.0%
4 26.44 26.33 -0.40%

Table 2: Benchmark results (in seconds) using vmstat as performance metric collector for
BQCD and IOR.

Both benchmarks were run ten times (respectively for one, two and four tasks) and the arith-
metic mean for each case was calculated. In Table 2 a negligible overhead running BQCD with
vmstat in the case of using one and two processes could be observed, while in the case of four
processes the arithmetic mean in the “instrumented” version is below the arithmetic mean in the
“uninstrumented” one. In the case of IOR (single shared file scenario), the deviations are again
negative, because the instrumented values are below the uninstrumented ones.

3.4 Conclusion
See Section 5.5, with the exception that this tool is part of most Linux distributions and was
often mentioned in the online survey as installed.

3.5 Remarks
Similar to several other tools discussed in this document, there is no possibility to collect the
data at non-integer intervalls.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

12/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

4 GNU time

4.1 Tasks and Metrics
GNU time (located by default under /usr/bin/time in all Linux distributions, while time is a
shell command with less functionality) is used to determine the runtime of a given program and
other used resources. After calling /usr/bin/time -v -p <executable> [arguments] the user
gets detailed information in the POSIX format.

The following list summarizes the metrics provided by GNU time:

• command being timed,

• user time, system time (in decimal seconds),

• percentage of the CPU this process used (for one core calculated as the sum of user and
kernel time divided by the wall clock time),

• elapsed (wall clock) time (h:mm:ss or m:ss),

• maximum resident set size (kbytes),

• number of major (requiring IO) and minor (reclaiming a frame) page faults,

• number of voluntary and involuntary context switches,

• number of file system inputs and outputs while the lifetime of the process ,

• page size used by the operating system (in general 4096 bytes for Linux),

• exit status of the program (and not of GNU time itself).

The metrics average shared memory size, average unshared data size, average unshared stack size,
average resident set size, number of swaps, number of of sent and received socket messages, as
well as amount of signals delivered are not supported in Linux and are set to zero.

4.2 Benchmark Runs
BQCD

Both benchmarks were launched with /usr/bin/time -v -p ./job_usrbintime.sh. In the
case of BQCD the job script ./job_usrbintime.sh had the following contents (here an example
with four processes):

mpirun -np 4 -bind-to core ./bqcd input.1nodes.1sockets.4cores

In Table 3 the arithmetic means of the different runs with no measurement with GNU time and
with the measurement with GNU time are given for the case of BQCD. As it can be seen, the
“instrumented“ runtime has just a negligible or no overhead in every case and the worst overhead
is below 0.6%, which is an acceptable value.

Program MPI tasks Without GNU time With GNU time Overhead
BQCD 1 29.05/29.19 29.12/29.25 0.24/0.20%

2 32.28/32.41 32.27/32.43 -0.03/0.05%
4 54.5/54.64 54.29/54.46 -0.39/-0.33%

Table 3: Benchmark results (in seconds) using GNU time as performance metric collector for
BQCD.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

13/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

IOR

The contents of the benchmark job script, from which IOR was called in the single shared file
mode, was:

mpirun -np 4 ./src/ior -a POSIX -w -r -b 500m -t 128k -g -e -Z -i 3 \
-o "test_ior.txt"

Program MPI tasks Without GNU time With GNU time Overhead
IOR 1 7.43 7.33 -1.35%

2 13.79 13.76 -0.20%
4 26.44 26.36 -0.29%

Table 4: Benchmark results (in seconds) using GNU time as performance metric collector for
IOR.

4.3 Conclusion
• Do we need root access?
No.

• Is a daemon necessary?
No.

• Is the tool usable with threads/MPI?
It is usable with threads and also with plain mpirun on a system. In combination with a
batch job system problems are arising (wrong counts and wrong CPU utilization) which
have to be evaluated.

• What metrics do I get?
See Section 4.1.

• What is the overhead?
In most cases there is just a low overhead, because the deviations between the instrumented
and non instrumented program runs are all below the acceptable limit (see Section 4.2).
The exception is the IOR benchmark with one core, where the deviation is above tolerance
and which have to be evaluated.

• What are the use cases?
GNU time is ideal to obtain a quick overview over the whole consumed time and selected
consumed resources of a process/job.

• How is the tool integrable into the batch system?
In SLURM it could be possible to put GNU time into the prologue and epilogue scripts.
Since SLURM uses the same mechanism as GNU time for reading out the same accounting
data with the sacct command (wait3 and getrusage system calls), it is possible to use
SLURM instead of GNU time.

• How is the tool integrable for the user?
In the manual part it can be used via the command line with single and multithreaded
applications and plain mpirun. It also works with batch scripts (c.f. child processes).

• Where is the tool available?
The tool can be found in every standard Linux distribution since it is part of the Linux
kernel.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

14/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

• Does the tool trace/sample?
Counting.

• How is the analysis data accessible?
The output is written to stderr.

4.4 Remarks
In case of multithreading, the user and the system time of all threads are summed. As a
consequence, in general one gets a greater count compared to only one thread (with the ratio
being approximately the number of threads).

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

15/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

5 Sysstat
The Sysstat package [3] contains several utilities for monitoring system performance and usage
activities. Its tools can be for example scheduled via cron jobs to collect and record the history
of performance and activity data.

The package provides several tools, such as:

• iostat reports CPU statistics and input / output statistics for block devices and partitions,

• mpstat reports individual or combined processor related statistics,

• pidstat reports statistics of IO, CPU, memory, etc. for Linux tasks (processes),

• sar collects, reports and saves system activity information (see below a list of metrics
collected),

• sadc is the system activity data collector, used as a backend for sar.

5.1 SAR
The System Activity Reporter (sar) records node-wise specific system parameters and creates
an output after specified time intervals (for instance every second) for the specified number of
times (or with no limit). Furthermore, the user can read “historical data” such as those collected
via cron jobs and sadc. Here, we only consider the first case.

5.1.1 Metrics

The relevant metrics provided by sar are listed in the following.

• Averaged CPU utilization (averaged over all cores; using option -u ALL, to display all CPU
fields)

– user and system time (includes the time, spent running on virtual processors (call:
sar); in decimal CPU seconds),

– user and system time (excludes the time, spent running on virtual processors (call:
sar -u ALL); in decimal CPU seconds),

– %iowait and %idle: Percentage of runtime the process was in the idle state while
(iowait) or while not waiting for the completion of an IO operation (idle).

• CPU utilization for all or selected cores (option -P { cpu [,...] | ALL })
With this option sar outputs among others the timestamp of the measurement, select-
ed/specified core(s), %user, %system, %iowait, and %idle in a table to stdout. With -P
ALL, sar creates a report for all cores / hardware threads and an averaged part for them.
For example, with -P 1,3, sar creates a report only for cores numbered 1 and 3 and their
respective averages.

• Memory utilization (option -r)

– free (kbmemfree) and used RAM memory (kbmemused) (both in kbytes),
– fraction of the RAM, which is used (%memused; in percent),
– part of the memory that was used more recently and will be reclaimed only if necessary
(kbactive; in kbytes),

– part of the memory that was used less recently and can in general be requested for
other tasks or processes (kbinact; in kbytes).

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

16/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

• Paging report (option -B)

– amount of kbytes per second the system paged in/out from/to disk (pgpgin/s, pgpgout/s),
– number of major page faults per second (majflt/s) and number of minor and major

page faults per second of the system (fault/s).

• Swap space utilization report (option -S)

– free and used swap space (kbswpfree and kbswpused; in kbytes),
– used swap space in percent (%swpused).

• Load averages report (option -q)

– average utilization of the system CPU(s) in the last 1, 5, or 15 minutes (ldavg-1,
ldavg-5, ldavg-15, respectively).

• IO statistics report (option -b)

– amount of data (in blocks of 512 bytes per second), which is loaded from / written to
the devices (bread/s and bwrtn/s).

• Network utilization report (option -n)

– sum of packets received and sent per second (rxpck/s and txpck/s),
– amount of kbytes received and sent per second (rxkB/s and txkB/s).

5.1.2 Benchmark Runs

BQCD

Similar to the previous cases BQCD was run ten times and the arithmetic means were calculated
in the case of one, two and four processes. BQCD was called with a measuring interval of 1
second and below an example call is listed:

/usr/bin/sar -u 1 60 > out_sar.txt&
time -p mpirun -np 4 -bind-to core ./bqcd input.1nodes.1sockets.4cores

The following values were obtained:

Program MPI tasks Without SAR With SAR Overhead
BQCD 1 29.05/29.19 29.14/29.26 0.31/0.24%

2 32.28/32.41 32.41/32.57 0.40/0.48%
4 54.50/54.64 54.57/54.72 0.13/0.14%

Table 5: Benchmark results (in seconds) using SAR as performance metric collector for BQCD.

In this examples no problematic overheads (positive deviations larger than 3%) running BQCD
with sar were observed.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

17/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

IOR

Program MPI tasks Without SAR With SAR Overhead
IOR 1 7.43 7.36 -0.94%

2 13.79 13.81 0.15%
4 26.44 26.36 -0.30%

Table 6: Benchmark results (in seconds) using SAR as performance metric collector for IOR.

In the case of IOR the benchmark runs were done in the single shared file mode. As in the
previous case, no problematic deviations were observed.

5.2 pidstat
The pidstat tool creates a report for Linux processes and threads and a load report of recent
CPU and IO utilization (disc and partitions). Without any option the user gets a list of processes
(as in the case of top).

5.2.1 Metrics

The metrics of our interest are the following:

• Create a report for a process containing string (option -C string). Some important data in
the report are:

– timestamp (hh:mm:ss),
– UID, PID,
– %usr and %sys part of the process,
– current core / hardware thread number the process is running on (CPU),
– fraction of the CPU time the process is using (%CPU; in percent).

• Creating a CPU utilisation report (option -u)

– see pidstat -C,
– CPU, command: core / hardware thread number on which the command recently runs.
– number of threads running in the process (additional flag -v is needed).

• Page fault and memory utilisation report (option -r)

– minor andmajor page faults per second of the listed task / process (minflt/s, maxflt/s),
– amount of virtual memory the task currently uses (VSZ; in kbytes),
– resident set size of the task (RSS; in kbytes),
– current memory utilization of the task in percent (%MEM).

• Generating an IO report (option -d)

– amount of data loaded from / stored to the device caused by the task (kB_rd/s,
kB_wr/s; in kbytes per second).

5.2.2 Benchmark Runs

Benchmarking pidstat led to similar results as in the sar case, with no significant overhead.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

18/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

5.3 iostat
iostat creates reports about recent CPU and IO utilisation (disks and partitions). Its most
important arguments are listed below.

Synopsis: iostat [-cdtx]

• -c: creates a CPU utilisation report,

• -d: creates an device / IO utilisation report,

• -t: additional output of the time stamp,

• -x: extended report statistics of iostat.

5.3.1 Metrics

The metrics collected by iostat are:

• user and system time, iowait and idle time percentages (CPU utilisation report),

• device to probe, transfers per second sent to the device (tps),

• number of finished read / write requests per device (Blk_read/s, Blk_wrtn/s; in blocks
per second),

• total number of blocks read / written (Blk_read, Blk_wrtn).

5.4 Installation and Requirements
The Sysstat utilities can be found for example in the repositories of OpenSUSE, Debian and
Ubuntu Linux distributions. To install sar manually, the classic “config; make; make install”
chain has to be performed. Root access is needed to install sar manually or using the package
manager.

5.5 Conclusion
• Do we need root access?
Only for the installation of the tool.

• Is a daemon necessary?
No.

• Is the tool usable with threads / MPI?
Yes / yes, but only node-based.

• What metrics do I get?
See Sections 5.1.1, 5.2.1, and 5.3.1.

• What is the overhead?
No problematic overhead (see Section 5.1.2).

• What are the use cases?
Performance measurement and monitoring at the node level.

• How is the tool integrable into the batch system?
With for example SLRUM it could be possible to start / finish sar from a prologue /
epilogue script. Another possibility is, that it can run node-wise and the metrics can be
collected like in PerSyst.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

19/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

• How is the tool integrable for the user?
The test cases were done with the Sysstat tools as background processes.

• Where is the tool available (architecture, OS, . . .)?
The tool is available in standard Linux repositories.

• Does the tool trace/sample?
Counting and sampling.

• How is the analysis data accessible?
The output is written to stdout.

5.6 Remarks
With the sar monitoring tool it is not possible to report the values at non integer time stamps
(intervall lengths). As the consequence the minimum time interval is one second. With this
interval length it is not possible to get fine grained data. For example, sar 2 3 creates a report
three times every two seconds and sar 2 creates a report every second second until the program
is killed. Sameis true for the tools iostat, mpstat, pidstat, and vmstat.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

20/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

6 Perf

6.1 Tasks
Perf is now part of the Linux kernel, thus should be available on all Linux clusters. If not, it can
easily be installed over the command line with the package linux-tools-generic. Perf accesses
hardware counters on each processor, but cannot be used across multiple nodes (i.e., with MPI).
Perf can be used in several different manners, all listed in Listing 1. These tools need different
permissions and will also show different detail depending on the granted permissions. The most
interesting commands for us are:

• perf stat
Generates a simple stdio output of the performance counter information (e.g., number of
cycles per instruction, number of cache misses, branch misses or similar). The events to
be counted and output can be chosen explicitly or a default set of counters can be shown.
No root privileges are needed for a run with perf stat. A complete list of available user
space events is given in Appendix A.

• perf record
It is used for the collection of samples. With collecting samples, the data will be stored in a
binary file (default perf.data, but can be changed with -o <filename>). To successfully
trace applications, perf record has to be called as root. In order to get the data collected
afterwards, the user needs to call, e.g., perf report for a general report of the overhead
caused by single operations. Both perf record as well as perf report have a wide variety
of options to be called. The events collected in perf stat can also be sampled in perf
record. One can also get the time stamped records.

$ perf

usage : perf [-- version] [--help] COMMAND [ARGS]

5 The most commonly used perf commands are:
annotate Read perf.data (created by perf record) and display
annotated code
archive Create archive with object files with build -ids
found in perf.data file

10 bench General framework for benchmark suites
buildid - cache Manage <tt >build -id </tt > cache .
buildid -list List the buildids in a perf.data file
diff Read two perf.data files and display the differential profile
inject Filter to augment the events stream with additional information

15 kmem Tool to trace / measure kernel memory (slab) properties
kvm Tool to trace / measure kvm guest os
list List all symbolic event types
lock Analyze lock events
probe Define new dynamic tracepoints

20 record Run a command and record its profile into perf.data
report Read perf.data (created by perf record) and display the profile
sched Tool to trace / measure scheduler properties (latencies)
script Read perf.data (created by perf record) and display trace output
stat Run a command and gather performance counter statistics

25 test Runs sanity tests .
timechart Tool to visualize total system behavior during a workload
top System profiling tool.

Listing 1: Commands usable with perf.

One solution to the root privileges needed for an all-encompassing collection of data could be to
modify the /proc/sys/kernel/perf_event_paranoid file (or similarly the sysctl setting with
the same name), which sets the access rights for all users. When using the sampling mode with
perf record, one has to be careful about the overheads, as the capture files can quickly become
hundreds of MBs in size. It would however depends on the rate of the event tracing: the more
frequent, the higher the overhead and larger perf.data file size.

Details about the events, including timestamps, the code path that has led to it, and other
specific details can be collected. Also hardware counters can be recorded - with different settings,
e.g., every x cycles, at every occurrence, or whenever the next xyz additions have been made.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

21/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

However, this is not suitable for a timeseries database solution.

One important advantage of perf tracing (if available) instead of, e.g., strace is that perf buffers
data in-kernel and thus reduces overhead as compared to strace. From Linux kernel 4.4 onwards,
there are more advanced options of using perf records by using BPF programs.

perf_events has a built-in visualization tool called timecharts, as well as text-style visual-
ization via its text user interface (TUI) and tree reports (see Ref. [4]).

6.2 Metrics
The types of events that can be measured by perf are:

• Hardware Events:
These instrument low-level processor activity based on CPU performance counters. For
example, CPU cycles, instructions retired, memory stall cycles, level 2 cache misses, etc.
Some will be listed as Hardware Cache Events.

• Software Events:
These are low level events based on kernel counters. For example, CPU migrations, minor
faults, major faults, etc.

• Tracepoint Events:
These are kernel-level events based on the ftrace framework. These tracepoints are placed
in interesting and logical locations of the kernel, so that higher-level behavior can be easily
traced. For example, system calls, TCP events, file system IO, disk IO, etc. These are
grouped into libraries of tracepoints; e.g., “sock:” for socket events, “sched:” for CPU
scheduler events.

• Dynamic Tracing:
Software can be dynamically instrumented, creating events in any location. For kernel
software, this uses the kprobes framework. For user-level software, uprobes is being used
instead.

• Timed Profiling:
Snapshots can be collected at an arbitrary frequency, using perf record -F Hz. This is
commonly used for CPU usage profiling, and works by creating custom timed interrupt
events.

A complete list of available user space events is given in Appendix A. This list may vary among
different systems. Additional kernel space events are not presented here, as the collection of them
would require either root access or further adaptions to the system.

6.3 Installation and Requirements
As perf comes pre-installed with most Linux distributions, there is usually no need to install it
separately. Usage is straightforward with detailed man pages and further elaborate information
in Ref. [5] and elsewhere.

6.4 Benchmark Runs
First experiments were conducted on the GWDG Scientific Compute Cluster. Timings were taken
with GNU time, to keep the overhead calculations and comparable to those done for the other
tools. The two tested settings were perf stat and perf record, both with no further options.

The output of the perf stat calls is directly delivered with the following text output.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

22/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

$./ ior -o test - filesystem -a POSIX -w -r -b 1024k -t 4k -F -g -e -Z -i 3

161 ,379247 task -clock (msec) # 0 ,490 CPUs utilized
326 context - switches # 0 ,002 M/sec

5 2 cpu - migrations # 0 ,012 K/sec
2.751 page - faults # 0 ,017 M/sec

448.146.929 cycles # 2 ,777 GHz
<not supported > stalled -cycles - frontend
<not supported > stalled -cycles - backend

10 765.162.013 instructions # 1,71 insns per cycle
147.940.746 branches # 916 ,727 M/sec

365.621 branch - misses # 0 ,25% of all branches
0 ,329640875 seconds time elapsed

With this output, the user already gets a text-based overview on certain performance metrics.
Very differently, perf record creates a database which can be read afterwards with perf report.
This output delivered from perf report can either be viewed with a GUI or also be redirected
to stdio with a simple flag. The output can be further refined through additional flags, but is
rather overwhelming for an inexperienced HPC user. By redirecting the output of perf report
to a temporary file, this file can be parsed and put into a better understandable format for the user.

The three versions were all run on Intel Sandy Bridge nodes and the median timing (real)
from 10 runs is shown in Table 7, for both IOR and BQCD:

Program MPI Tasks /
Threads Original perf stat Overhead perf record Overhead

BQCD (M) 2/8 14.4585 14.627 1.17% 18.583 28.53%
3/8 19.289 19.2805 -0.04% 22.999 19.23%
4/8 18.491 18.563 0.39% 22.7885 23.24%
8/8 18.8405 18.7565 -0.45% 25.2315 33.92%

BQCD (A) 2/8 14.5998 14.7209 0.83% 18.8754 29.28%
3/8 19.3832 19.1943 -0.98% 23.4066 20.75%
4/8 18.545 18.5058 -0.22% 23.1927 25.06%
8/8 19.011 18.811 -1.05% 25.136 32.22%

IOR (M) 2/1 5.2375 5.286 0.9% 5.241 0.06%
3/1 4.5455 4.6475 2.2% 5.066 11.4%
4/1 4.68 4.732 1.11% 5.163 10.3%
8/1 4.9565 4.964 0.15% 5.547 11.91%
10/1 5.3245 5.2355 -1.67% 5.89 10.62%

IOR (A) 2/1 5.3619 5.3458 -0.31% 4.977 -7.18%
3/1 5.8935 4.7183 -19.95% 5.0509 -14.3%
4/1 6.2892 4.7652 -24.23% 5.0943 -19%
8/1 5.0335 4.9648 -1.36% 5.5153 9.57%
10/1 5.4784 5.2717 -3.77% 6.1595 12.43%

Table 7: Benchmark results (in seconds) using perf as performance metric collector for BQCD
and IOR. Median (M) and average (A) times from 10 runs.

In Table 7, we show both the median and the average times to emphasize the impact of single
outliers on this platform.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

23/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

6.5 Conclusion
1. Do we need root access?

Not necessarily, but without the root permission certain counters can not be collected.
However, this can be circumvented by setting the corresponding sysctl setting.

2. Is a daemon necessary?
No.

3. Is the tool usable with MPI/threads?
It is usable with MPI by starting it alongside each MPI process, i.e. mpirun perf a.out.
Then, the aggregation of the collected metrics has to be done manually.

4. What metrics do I get?
Various hardware counters, both from the user space and the kernel space, including but not
limited to information on branch predictions, cache usage and misses, time, CPU informa-
tion, context switches, cycles, memory stores and loads, and many more (see Appendix A
for an example of user-space events).

5. What is the overhead?
Highly dependent on the profiling style (stat, record, trace). The overhead can be
decreased by reducing the sampling frequency or limiting the monitored events accordingly.

6. What are the use-cases?
Single node jobs or system-wide performance profiling.

7. How is the tool integratable?
Using command line with perf <command> [options] <executable>.

8. Where is the tool available (architecture, OS, . . .)?
Comes with the Linux kernel. The available hardware counters and their accessibility are
vendor and version dependent, i.e., AMD has different counters than Intel and older Intel
processors have generally less available counters than newer processors.

9. Does the tool trace/sample?
Sampling is provided in all versions of perf. From kernel versions 4.4 and higher, perf also
comes with a trace command. Even in the older version a call stack trace can be retrieved
from perf record with according options set.

10. How is the analysis data accessible?
perf stat delivers a stdio summary of the monitored events. perf record provides a data
file that can be read with perf report. The latter can either be used with a GUI or the
output can be redirected to stdio.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

24/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

7 LIKWID
LIKWID [6, 7] consists of twelve tools, in which only the following tools are of interest to our
use case:

• likwid-perfctr
With this tool the user can configure and read the data of the hardware counters.

• likwid-topology
Generates a report about the processor, cache and NUMA topology and data.

• likwid-pin
Enables thread pinning/thread binding (Pthreads, OpenMP).

• likwid-mpirun
Wrapper to start MPI and MPI/OpenMP applications (with explicit process binding).

We will present these tools in the following subsections.

7.1 likwid-perfctr
likwid-perfctr configures and reads out the hardware counters on x86 architectures. It contains
the following four modes, which will be discussed subsequently:

• wrapper mode,

• stethoscope mode,

• timeline mode,

• marker API.

Wrapper mode

In this mode LIKWID gets the contents of the performance counters for the specified process
without any need to change the code (in contrast for example to PAPI). With the command
likwid-perfctr -a one gets a CPU dependent list of predefined performance metric groups
(See appendix C for an Intel Core i5-6500 CPU). These predefined performance groups can be
extended with self-defined performance groups. One can measure as much events as performance
counters are built in.

The following two examples should explain the usage of likwid-perfctr.

• In this example a bubble sort program is measured on socket 0, core 0, and is pinned to
these entities (flag -C). The performance group L2CACHE is used on these entities for bubble
sort.

$ likwid - perfctr -C S0:0 -g L2CACHE ./ bubblesort

CPU name: Intel(R) Core(TM) i5 -6500 CPU @ 3.20 GHz
CPU type: Intel Skylake processor

5 CPU clock: 3.19 GHz

WARN: Linux kernel configured with paranoid level 1
WARN: Paranoid level 0 is required to measure Uncore counters

10 Die Sortierung mittels Bubblesort ist beendet !

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

25/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

Group 1: L2CACHE

15 +-----------------------+---------+-----------------+
| Event | Counter | Core 0 |
+-----------------------+---------+-----------------+
| INSTR_RETIRED_ANY | FIXC0 | 185323159882 |
| CPU_CLK_UNHALTED_CORE | FIXC1 | 97560348322 |

20 | CPU_CLK_UNHALTED_REF | FIXC2 | 86936617208 |
| L2_TRANS_ALL_REQUESTS | PMC0 | 1241331181 |
| L2_RQSTS_MISS | PMC1 | 216486875 |
+-----------------------+---------+-----------------+

25 +----------------------+-----------+
| Metric | Core 0 |
+----------------------+-----------+
| Runtime (RDTSC) [s] | 27.6642 |
| Runtime unhalted [s] | 30.5640 |

30 | Clock [MHz] | 3582.0722 |
CPI	0.5264
L2 request rate	0.0067
L2 miss rate	0.0012
L2 miss ratio	0.1744

35 +----------------------+-----------+

Listing 2: Example output of likwid-perfctr.

In the first three output lines information about the processor is listed, while in the following
two lines a warning is printed out followed by the output of the program. After that, the
performance information follows. In every call of this tool the output is divided into a table
with the raw event counts and another table with the derived metrics. If there are more
than one cores, an additional statistic of the minimum, maximum and summed values of
those cores is printed out. In the first table we have the number of instructions, which are
finished and four other Events. In the metrics table, the runtime and the average clock rate
plus the averaged CPI (Cycles Per Instruction) can be found. These are the metrics which
are displayed for every group. L2 miss rate denotes the number of L2 misses based on all
L2 accesses. The L2 request rate means the L2 requests per cycle.

• The second example shows how to pin the threads to the appropriate cores or hardware
threads (option -C) and how to get the information of all L2CACHE metrics.

likwid-perfctr -C 0-3 -g L2CACHE ./bubblesort

The output of the first 5 lines is analogous to the above example, as well as the output of the
program. After that, one can find two tables similar to above but with the difference, that
the data is listed for all the cores listed in the command line. Furthermore, likwid-perfctr
prints out the report of the cores/hardware threads (sum, min, max, avg) in another table
below the two tables.

Timeline mode

In the timeline mode the user can explicitly choose the time resolution. For example, the user
can switch the scan rate to five seconds, so that only every fifth second the data is collected
from the hardware counters. The advantage is a lower system load because of smaller measure
activities for the whole system and not just for one process. See the following example:

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

26/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

likwid-perfctr -C S0:0-3 -g BRANCH -t 5s

With -t one can specify the scan rate. The output channel is stderr.

Stethoscope mode

In this mode the user can access or monitor the resources (e.g. cores) for a given time without
knowledge of the program. This is interesting for nodewide counting and sampling (among
others).

Marker API

With the marker API of likwid-perfctr the user can measure specified regions of the code.
Therefore one have to include special functions into the code like in the following example (this
code stub is from the documentation of likwid-perfctr):

include <likwid .h>

LIKWID_MARKER_INIT ;
LIKWID_MARKER_THREADINIT ;

5

LIKWID_MARKER_START (" Compute ");
// ...
// The code to measure
// ...

10 LIKWID_MARKER_STOP (" Compute ");
LIKWID_MARKER_CLOSE ;

In this case only the marked region will be measured by likwid-perfctr.

7.2 likwid-topology
likwid-topology creates a textual report of the cores / hardware threads, caches, and the
NUMA topology (in the latter two cases an ASCII graphic is generated). In its most general
form (likwid-toplogy -C -c -V 3 -g), the user gets the following information:

• CPU name and type, stepping, current clock rate,

• topology of the CPUs (number of sockets, cores per socket, threads per core and the
numbering of the hardware threads and their mapping to cores and sockets),

• cache topology: report about the cache levels with additional information for every level
(amount of k/mbytes per cache / cache level, cache type, associativity of the cache, number
of sets, cache line length, cache type (inclusive or non inclusive cache), shared by threads,
cache group),

• NUMA topology: number of NUMA domains and the core assignment to a NUMA domain,
free and total amount of RAM memory in MBytes (for a NUMA domain),

• graphical representation of the cache topology of every socket.

likwid-topology extracts the information from the hwloc library or the CPUID instruction.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

27/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

7.3 likwid-pin
likwid-pin is used to pin threads to specified hardware threads / cores / sockets and NUMA re-
gions without rewriting the code (system independent). It is possible to pin the threads explicitly
to a predefined set of cores / hardware threads or automatically via a compact or scatter strategy.
Furthermore, it is possible to specify regions of affinity. The user can specify nodes (N), sockets
(S), NUMA regions (M) and cache groups (C). The number that follows that letter specifies for
example the number of threads. For example likwid-pin -c S0:4 ./stream_c.exe specifies
socket 0 with 4 threads.

This tool does not collect any metrics. likwid-pin explicitly supports Pthreads and the OpenMP
implementations of Intel and GCC compilers.

7.4 likwid-mpirun
likwid-mpirun is a tool to start MPI jobs and to pin the processes and threads to nodes, sockets,
cores or hardware threads, and it is based on likwid-pin. It also gets the values of (selected)
metrics and has additionally the same functionality as likwid-perfctr. The two examples below
should exemplify the usage:

• likwid-mpirun -np 4 ./bqcd input.1nodes.1sockets.4cores
This command line starts the BQCD program with 4 processes and is just a MPI based
job with no further pinning.

• likwid-mpirun -np 4 -nperdomain S:2 ./bqcd input.1nodes.1sockets.4cores
In this example on a two socket machine on every socket two processes will be started
and pinned with likwid-pin (implicit application). There are 4 domains, which can be
specified: N (node), S (socket), C (last level cache), M (NUMA domain).

7.5 Benchmark Runs
We have performed benchmarking with likwid-mpirun to check, if measurements have a non
negligible impact on the runtime.

BQCD

To benchmark BQCD in combination with LIKWID, we used the following command line (here
an example with four processes).
time -p likwid-mpirun -nperdomain S:4 -g BRANCH ./bqcd input.1nodes.1sockets.4cores

The results are presented in Table 8.

Program MPI Tasks Without
likwid-mpirun

With
likwid-mpirun Overhead

BQCD 1 29.05/29.19 29.09/30.35 0.14%/3.98%
2 32.28/32.41 32.37/33.64 0.28%/3.81%
4 54.50/54.64 54.60/55.86 0.18%/2.24%

Table 8: Benchmark results (in seconds) using likwid-mpirun as performance metric collector
for BQCD.

As it can be seen, there is a non negligible overhead with running BQCD and likwid-mpirun in
the case of one and two processes. In particular, using likwid-mpirun implies a non-negligible
overhead for programs with a short runtime, because the wall-clock time values with “instrumen-
tation” are significantly larger than the values measured by the application.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

28/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

IOR

Program MPI Tasks Without
likwid-mpirun

With
likwid-mpirun Overhead

IOR 1 7.43 8.45 13.73%
2 13.79 14.9 8.05%
4 26.44 27.29 3.22%

Table 9: Benchmark results (in seconds) using likwid-mpirun as performance metric collector
for IOR.

In the case of the “instrumented“ IOR results presented in Table 9, the deviations from the
“uninstrumented“ values are in two cases larger than ten percent, which is unsatisfactory for our
use cases.

It was observed, that in all benchmark cases there was a difference of about one second bet-
ween finishing the application and finishing likwid-mpirun. As the consequence, the relative
deviation will decrease with increasing runtime.

7.6 Installation and Requirements
LIKWID can be installed with a “config; make; make install” routine. A detailed description can
be found on the homepage of LIKWID. Since LIKWID have to use the MSR kernel module and
the Uncore performance counters (in the PCI space), proper access permissions need to be set for
LIKWID. One can also consider using the access daemon, likwid-accessD, which encapsulates
this access and performs an address check for allowed registers, therefore removing the need for
the root permission. However, since more recent kernels have tighter securities for accessing the
MSR device, this will not be sufficient anymore, and the binary itself has to be registered. This
is only possible on local file systems [7].

7.7 Conclusion
• Do we need root access?
No, but the MSR kernel module has to be installed by root and access must be granted
beforehands.

• Is a daemon necessary?
Yes, if the access daemon is activated for security reasons.

• Is the tool usable with threads / MPI?
Yes (see also likwid-mpirun).

• What metrics do I get?
Run-time and hardware performance counter based metrics of the job (see appendix C);
thread, cache and NUMA topology of the node.

• What is the overhead?
Relatively high overhead (see Section 7.5).

• What are the use cases?
Performance measurement with the use of hardware counters.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

29/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

• How is the tool integrable into the batch system?
In SLURM it could be possible to put likwid-perfctr into the prologue and/or epilogue
scripts.

• How is the tool integrable for the user?
See the examples above.

• Where is the tool available (architecture, OS, . . .)?
The tool can be built on any distribution with a recent GCC or CLANG compiler and the
Linux kernel version 2.6 or newer without any changes.

• Does the tool trace/sample?
Counting and tracing (the latter only with the marker API).

• How is the analysis data accessible?
The output is done to stdout.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

30/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

8 Darshan

8.1 Tasks and Metrics
Darshan [8, 9] is a scalable IO profiling tool, designed to capture an accurate picture of applica-
tion’s IO behaviour, including properties such as patterns of access within files, with minimum
overhead. It can be used to investigate and tune the IO behavior of complex HPC applications.

The Darshan source tree is organized into two primary components:

1. darshan-runtime: Darshan runtime framework necessary for instrumenting MPI applications
and generating IO characterization logs. It should be installed on the system where you
intend to collect IO characterization information.

2. darshan-util: Darshan utilities for analyzing the contents of a given Darshan IO characteri-
zation log. The darshan-util package can be installed and used on any system regardless of
where the logs were originally generated.

The darshan-runtime only instruments MPI applications (the application must at least call
MPI_Init and MPI_Finalize). However, it captures both MPI-IO and POSIX file accesses.

8.2 Installation and Requirements
The darshan-runtime requires an MPI C compiler. For the installation of the darshan-utils the
zlib development headers and library are needed. Optionally for generating PDF reports, libbz2
development headers and library, Perl, pdflatex, gnuplot 4.2 or later, and epstopdf are used.

8.3 Benchmark Runs
Run-time comparisons shown in Table 10 were performed on an eight node FDR InfiniBand
system, each node equipped with two 6-core 2.4 GHz Intel Xeon Haswell processors and 64 GB
RAM. BeeGFS was used as the parallel file system. IOR multi-stream benchmark was performed
by the following command:

./ior -v -o <testdir> -a POSIX -w -r -b 1g -t 1m -F -g -e -Z -i 3

Program MPI
Tasks

OpenMP
Threads

Without
Darshan

With
Darshan Overhead

BQCD 96 1 61.58 s 61.67 s 0.1%
48 1 60.09 s 60.05 s -0.1%
48 2 34.61 s 34.87 s 0.8%
1 1 48.55 s 49.08 s 1.1%
1 12 5.24 s 5.26 s 0.4%
24 1 60.93 s 60.91 s 0.0%

IOR 96 1 (w) 5071.69 MiB/s 5027.17 MiB/s -0.9%
(r) 15638.61 MiB/s 16672.4 MiB/s 6.6%

48 1 (w) 5419.85 MiB/s 5555.02 MiB/s 2.5%
(r) 19885.65 MiB/s 20367.78 MiB/s 2.4%

24 1 (w) 5934.18 MiB/s 6221.74 MiB/s 4.8%
(r) 19775.40 MiB/s 19789.57 MiB/s -0.1%

Table 10: Benchmark results (average of five runs) using Darshan as performance metric
collector for BQCD and IOR.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

31/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

Only a negligibly small overhead in a range of a few percents can be observed in our benchmark
runs.

8.4 Example Output
An example graphical summary of the IO activity for an IOR run generated by the darshan-job-
summary.pl script from the darshan-utils as PDF document is shown on the next pages.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

32/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

ior (3/5/2017) 1 of 3

jobid: 30850 uid: 2126 nprocs: 5 runtime: 1141 seconds

I/O performance estimate (at the POSIX layer): transferred 2734 MiB at 5254.66 MiB/s

 0

 20

 40

 60

 80

 100

PO
SIX

STD
IO

P
e

rc
e

n
ta

g
e

 o
f

ru
n

 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

-200000

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

Read Write Open Stat Seek Mmap Fsync

O
p

s
 (

T
o

ta
l,
 A

ll
P

ro
c
e

s
s
e

s
)

I/O Operation Counts

POSIX STDIO

 0

 100000

 200000

 300000

 400000

 500000

 600000

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o

u
n

t
(T

o
ta

l,
 A

ll
P

ro
c
s
)

POSIX Access Sizes

Read Write

Most Common Access Sizes
(POSIX or MPI-IO)

access size count
POSIX 5242880 1198080

File Count Summary
(estimated by POSIX I/O access offsets)

type number of files avg. size max size
total opened 7 140G 195G

read-only files 1 195G 195G
write-only files 5 118G 195G
read/write files 1 195G 195G

created files 6 131G 195G

./ior -v -o /mnt/beegfs/bzadmgla/testdir striped/testfile -a POSIX -w -r -b 195g -t 5m -F -g -e -Z -i 3

Figure 1: Example Darshan output, page 1/3.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

33/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

ior (3/5/2017) 2 of 3

 0

 1

 2

 3

 4

00:00:00 00:02:00 00:04:00 00:06:00 00:08:00 00:10:00 00:12:00 00:14:00 00:16:00 00:18:00

M
P

I
ra

n
k

hours:minutes:seconds

Timespan from first to last read access on independent files (POSIX and STDIO)

 0

 1

 2

 3

 4

00:00:00 00:02:00 00:04:00 00:06:00 00:08:00 00:10:00 00:12:00 00:14:00 00:16:00 00:18:00

M
P

I
ra

n
k

hours:minutes:seconds

Timespan from first to last write access on independent files (POSIX and STDIO)

00:00:00 00:02:00 00:04:00 00:06:00 00:08:00 00:10:00 00:12:00 00:14:00 00:16:00 00:18:00

A
ll

p
ro

c
e

s
s
e

s

hours:minutes:seconds

Timespan from first to last access on files shared by all processes (POSIX and STDIO)

read
write

Average I/O per process (POSIX and STDIO)
Cumulative time spent in
I/O functions (seconds)

Amount of I/O (MB)

Independent reads 572.5042094 599040
Independent writes 536.1680784 599040
Independent metadata 0.1305908 N/A
Shared reads 0 0
Shared writes -7753.6137556 0.000521469116210937
Shared metadata 0 N/A

Data Transfer Per Filesystem (POSIX and STDIO)

File System
Write Read

MiB Ratio MiB Ratio
UNKNOWN 0.00261 0.00000 0.00000 0.00000
/mnt/beegfs 2995200.00000 1.00000 2995200.00000 1.00000

./ior -v -o /mnt/beegfs/bzadmgla/testdir striped/testfile -a POSIX -w -r -b 195g -t 5m -F -g -e -Z -i 3

Figure 1 (cont.): Example Darshan output, page 2/3.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

34/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

ior (3/5/2017) 3 of 3

 599024

 599026

 599028

 599030

 599032

 599034

 599036

 599038

 599040

Read Write

O
p

s
 (

T
o

ta
l,
 A

ll
P

ro
c
s
)

POSIX I/O Pattern

Total
Sequential

Consecutive

sequential: An I/O op issued at an offset greater than where the previous I/O op ended.
consecutive: An I/O op issued at the offset immediately following the end of the previous I/O op.

Variance in Shared Files (POSIX and STDIO)
File Processes Fastest Slowest σ

Suffix Rank Time Bytes Rank Time Bytes Time Bytes
...<STDERR> 5 1 0.000000 0 0 0.000037 357 0 143
...<STDOUT> 5 0 -9121.970555 2.4K 2 -4560.962334 0 1.82e+03 951

./ior -v -o /mnt/beegfs/bzadmgla/testdir striped/testfile -a POSIX -w -r -b 195g -t 5m -F -g -e -Z -i 3

Figure 1 (cont.): Example Darshan output, page 3/3.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

35/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

8.5 Conclusion
1. Do we need root access?

No.

2. Is a daemon necessary?
No.

3. What are requirements?
MPI C compiler, zlib development headers and library, optionally Perl, libbz2 development
headers and library, pdflatex, gnuplot 4.2 or later, epstopdf.

4. Is the tool usable with MPI/threads?
Yes, even necessary, as Darshan only instruments MPI applications.

5. What metrics do I get?
IO access patterns at the POSIX and MPI-IO layers and IO cost per process in percentage
of the run time of the application.

6. What is the overhead?
Overhead is generally low.

7. What are the use-cases?
IO access pattern and statistics of IO activity.

8. How is the tool integratable?
Statically linked executables must be instrumented at compile time. For dynamically linked
executables, Darshan relies on the LD_PRELOAD environment variable to insert instrumenta-
tion at run-time. The Darshan instrumentation is saved in a job specific log file, which can
be read by the darshan-parser utility to obtain a complete, human-readable, text-format
dump of all information contained in a log file. This step can be done automatically by the
batch system in a job epilogue script.

9. Where is the tool available (architecture, OS, . . .)?
The tool has been tested on general Linux clusters, Cray architectures, and IBM Blue Gene
systems.

10. Does the tool trace/sample?
Darshan instruments applications to provide coarse-grained IO summary. Starting in
version 3.1.3, Darshan also allows for full tracing of application IO workloads using the
newly developed Darshan eXtended Tracing (DxT) instrumentation module.

11. How is the analysis data accessible?
An application that has been instrumented with Darshan will produce a single log file each
time it is executed. This log summarizes the IO access patterns used by the application.
Darshan provides a collection of tools for parsing and summarizing log files.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

36/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

9 Intel MPI

9.1 Tasks and Metrics
To collect data about communication information and communication patterns it is possible to
use Intel MPI’s Statistics Gathering Mode. The control of collecting information is done via
setting appropriate environment variables and the data is collected between calls of the MPI_Init
and MPI_Finalize functions.

A detailed listing of all relevant parameters can be found in Section 4.6 of the Intel MPI Li-
brary Developer Reference [10].

The report functionality can be switched on / off and controlled with the following environ-
ment variables:

• I_MPI_STATS switches report generation on and off,

• I_MPI_STATS_SCOPE selects the subsystem (and perhaps the communication functions),
which should be reported,

• I_MPI_STATS_BUCKET defines for example the range of the message sizes, which should be
reported, and the communicator size.

These environment variables are the most important variables to control the statistic functionality
of Intel MPI. With the first one, the report functionality can be switched on or off. With the
second variable, it is possible to select the general communication pattern which should be
analyzed and with what a coarse analysis is possible. The following keywords describe the general
communication patterns:

• all: collect data about all communication operations (default),

• coll: collect data of all collective operations,

• p2p: collect data of all point to point operations.
Additionally the user can specify concrete communication operations, which should be measured
(for example MPI_Bcast to measure just the broadcast operations). Communication operations,
which are not listed, are omitted.

With I_MPI_STATS_BUCKET it is possible to set the message and communicator sizes. With
this property the user can for example set a range of message sizes, which should be evaluated.
Messages, whose sizes are not in this range, are omitted.

There are two output formats: native and IPM. In the native format, which is available in
plain text, the user gets information about the data transfer from every process to the other
processes (in MBytes and amount of transfers). This is further divided in two tables of point to
point and collective communications. In the first kind of communication, the user gets information
of all point to point operations defined in the MPI standard (e.g., in the case of I_MPI_STATS_-
SCOPE=all the amount of transferred volume, the number of calls of the appropriate function
and the min/avr/max/total transfer time in milliseconds). The user obtains similar information
in the case of the collective communication mode. The IPM format is a more compact and a
portable variant of the native data format. The default name of the output file is stats.txt,
which can be changed by setting the I_MPI_STATS_FILE environment variable.

9.2 Installation and Requirements
Because of the multiple steps required to install the Intel MPI we refer to the Intel MPI Installation
Guide [11]. For earlier versions of Intel MPI see the corresponding guides.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

37/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

9.3 Benchmark Runs
In contrast to the other chapters of this deliverable, the STREAM benchmark was used to examine
the runtime, when the Intel MPI Statistics Gathering Mode is applied. The STREAM benchmark
was compiled with the Intel Compiler 15.0.3 and the Intel MPI library 5.0.3 was used in this
benchmark case. The benchmark was repeated ten times with and without the reporting ability
of Intel MPI in the case of 16, 32 and 64 tasks. The results are presented in Table 11. It can be

Program MPI tasks Without
Intel statistics

With
Intel statistics Overhead

STREAM 16 34.41 34.41 0.0%
32 17.49 17.53 0.23%
64 8.93 9.0 0.78%

Table 11: Benchmark results (in seconds) using Intel MPI’s statistics gathering mode as
performance metric collector for STREAM.

seen, that there is only a negligible overhead in the case of the STREAM benchmark.

9.4 Conclusion
• Do we need root access?
No.

• Is a daemon necessary?
No.

• Is the tool usable with threads/MPI?
Yes / yes.

• What metrics do I get?
See Section 9.1.

• What is the overhead?
No significant overhead (see Section 9.3).

• What are the use cases?
Performance measurement of the network / MPI communication.

• How is the tool integrable into the batch system?
Similar to the others tools, the results can be possibly gathered using prologue and/or
epilogue scripts of the batch system.

• How is the tool integrable for the user?
See Section 9.1.

• Where is the tool available (architecture, OS, . . .)?
It is available under Windows and Linux on x86 architectures and it is part of the Intel
MPI library. It can be installed either as stand-alone or as part of the Intel Parallel Studio
XE Cluster Edition, which is available in many of the surveyed institutions.

• Does the tool trace/sample?
Counting.

• How is the analysis data accessible?
The output is written to stdout.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

38/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

10 Open | SpeedShop

10.1 Tasks
Open | SpeedShop (O | SS) [12] offers several different experiments with which profiling data can
be collected. Each of these experiments is started in the same fashion:

oss<experiment> ‘‘<execution command>’’ [parameters]

Even though the program is run with a wrapper, it is suggested to compile the application with
the -g option.

The experiments supplied by O | SS are:

• pcsamp periodic sampling of program counters,

• usertime periodic sampling of the call path,

• hwc counting of hardware events,

• hwcsamp hardware event sampling (max 6 events),

• hwctime hardware counters plus call path sampling,

• io accumulated wallclock measurement of IO including unique IO call paths,

• iop IO without individual call paths,

• iot IO plus additional information on bytes moved, file names, etc.,

• mpi timings and unique call paths for all MPI routines,

• mpip lightweight MPI,

• mpit tracing of MPI calls,

• mem tracking of memory leaks, memory allocation, call paths, etc.,

• pthreads timings and unique call paths for POSIX thread functions,

• omptp reports task idle, barrier and barrier wait times per OpenMP thread and attributes
these to OpenMP parallel regions.

These experiments collect the profiling data in different databases (one per experiment). A GUI
can be launched in order to visualize the data in the different databases. Some of the experiments
also have a CLI, or directly output some information to the console after the successful completion
of the program, and the “application’s symbol information is saved into the experiment output file
so that the performance reports can be generated from the performance data file alone” (Ref. [12],
p. 10). All information from the databases can also be exported as a CSV file, for which plotting
instructions are supplied in the O | SS tutorials. Additionally, two further interfaces are supplied:
the immediate command interface (batch), and a python scripting API.

Each experiment consists of collectors and views. Collectors define the different data sources,
such as program counter samples, call stack samples, hardware counters, or traces of library
routines. According to [12] p. 10, it is possible to implement multiple collectors per experiment,
as some experiments already do so. On the other hand, views specify the aggregation and pre-
sentation of the data. The default aggregation is the sum across all nodes or threads, but the
thread or node-specific data is still accessible. The data in the databases can be accessed and
visualized either via the GUI or a CLI. Some experiments additionally print a default report to

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

39/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

Experiment Sampling Tracing PAPI CLI GUI stdio
pcsamp X X X

usertime X X X X X
hwc X X X X

hwcsamp X X X X
hwctime X X X X X

io X X X
iop X X X
iot X X X
mpi X X X
mpip X X X
mpit X X X
mem X X X

pthreads X X X
omptp
cuda X X X

Table 12: Accessibility of O | SS experiments.

stdio. Table 12 shows which experiment data is accessible in what way. It is possible to sam-
ple up to 6 hardware counter events at the same time, but hwc only samples one hardware counter.

The experiment io monitors several different IO operations, all listed in the specification, but
does not record the arguments. iot additionally records the arguments of each call. Similarly,
iop is a lightweight profiling solution that does not record timing of each individual call, but
rather of all calls with the same name.

When using O | SS with OpenMP, thread wait time will only be detected if the program was built
with the OMPT enhanced OpenMP runtime library [13]. Then, there are two different types of
support available:

1. omptp: an OpenMP specific profiling experiment, or,

2. integration of the information gathered from the OpenMP runtime (through OMPT tool)
into existing displays and experiments (Ref. [12], p. 90).

O | SS also offers the possibility of using and writing plugins. Newer versions of O | SS rely on
the Component Based Tool Framework (CBTF), enabling a on the fly collection of the data in a
database over a TCP/IP network from all nodes and threads, instead of writing local files and
then aggregating these at the end of the application run.

10.2 Metrics
Depending on the experiment used, one can obtain information on:

• program counters,

• hardware counters,

• call path sampling,

• IO,

• MPI call tracing,

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

40/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

• memory tracking,

• Pthread call paths and timings,

• OpenMP idle, barrier and barrier wait times.

The availability of different hardware counters depends on the underlying hardware and the PAPI
installation used. In Appendix B a list of usable PAPI events is given.

10.3 Installation and Requirements
The following experiences were made with O | SS versions 2.3.0 and 2.3.1 on the GWDG Scientific
Compute Cluster with LSF Batch System.

O | SS is installed by compiling from source. No root access is needed for the installation. O | SS
has many dependencies, most of which are installed by default during the installation process.
During our installation attempts, some of these dependencies were not correctly identified and
they needed to be installed explicitly. The whole installation process is divided into three parts;
a Krell root installation, a CBTF installation, and the O | SS installation. The convenience script
that installs all three instances at once cannot be recommended, as it does not stop the build
if one of the steps fails. This in particular can be troublesome because the installation process
takes usually several hours. The installation scripts are not logged, and that has to be taken care
of additionally.

In the LSF batch system, O | SS cannot be used with the standard MPI run command mpirun.lsf.
This is an issue known to the developers and it should be resolved in one of the next releases, as
the LSF integration is still recent (at the time of writing).

O | SS relies on MRNet, which builds an underlying network for the aggregation of the mea-
sured data. MRNet is already known to have several issues, such as not finding a necessary script
(mrnet_commnode). However, a workaround is addressed in the MRNet user guide. MRNet also
needs a topology file for the creation of the subnetwork. In the best case, the topology file is auto-
matically generated with the delivered topology_generator. Nevertheless in the case of LSF, the
topology file could not be automatically generated. An (undocumented) option –topology lets
the user hand over a self-designed topology file (the structure of which can be found in the MR-
Net guide). For LSF, a simple python script can be written to generate a (very basic) topology file.

One major drawback of O | SS is the (a priori) fact that only one instance of O | SS can be
run per CWD. MRNet creates a file attachBE_connections, which has no further identifier.
Thus, if multiple instances of O | SS experiments are to be run, they will overwrite each other and
potentially use a wrong file, leading to an error or an undesired behaviour. This directly leads to
another point: cleaning up is necessary after each run of O | SS to delete temporary files like the
aforementioned or the topology file.

There seems to be a substantial problem exists when using O | SS across multiple nodes. In
general, our tests showed several issues with files, shared objects or even the O | SS binary itself
not being found. We were not be able to clarify so far where the problem lies, i.e., whether it is
a batch system problem, a general problem, a configuration problem or any other.

Dependencies

O | SS relies on a series of other tools to collect the data, including Dyninst [14], MRNet [15],
libmonitor [16] and PAPI [17]. A further list of packages is given in the O | SS installation guide,
of which all except one (CMake) had to be downloaded individually.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

41/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

O | SS requires the GNU compilers to build. Currently, it does not build with PGI, Intel, Cray,
or any other compiler. In our tests, the package built with GNU supported performance analysis
of applications compiled using Intel, PGI, Pathscale, and Cray compilers. Nonetheless, O | SS
has to be offered in all combinations of compilers and MPI versions available, to reliably work
in all experiments. To ensure this, further investigations needs to be done to see whether one
needs a complete installation for each compiler-MPI combination, or if there is an easier way to
establish the availability for all combinations.

10.4 Benchmark Runs
The experiments with O | SS were completed on only one node but with multiple MPI jobs, for
the reasons mentioned above. For this reason, the number of threads per MPI process was always
stable at one OpenMP thread per MPI process. The experiments were conducted on the GWDG
Scientific Compute Cluster, but this time using nodes containing 20 Intel E5-2650 v3 CPUs.

All timings given in Tables 13 and 14 are the median real times of 10 runs from /usr/bin/time
in seconds. We observed significant overheads regarding our benchmarks.

BQCD

Experiment MPI
Processes

OpenMP
Threads Without O | SS With O | SS Overhead

ossio 2 1 35.7565 50.017 40%
3 1 36.155 50.583 40%
4 1 36.7945 51.212 39%
8 1 42.012 57.399 37%
10 1 44.381 58.813 33%
20 1 46.536 63.727 37%

osspcsamp 2 1 54.3965 52%
3 1 55.7565 54%
4 1 56.3705 53%
8 1 60.898 45%
10 1 60.525 36%
20 1 67.8235 46%

osshwcsamp 2 1 54.6805 53%
3 1 55.9625 55%
4 1 56.786 54%
8 1 61 45%
10 1 62.156 40%
20 1 68.18750 47%

Table 13: Benchmark results using O | SS as performance metric collector for BQCD: median
times from 10 runs in seconds.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

42/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

IOR

Experiment MPI
Processes

OpenMP
Threads Original With O | SS Overhead

Factor
ossmpi 2 1 0.3195 11.5575 36.17

3 1 0.3885 11.5935 29
4 1 0.4755 11.6245 24.45
8 1 0.924 12.435 13.46
10 1 1.0925 12.717 11.64
20 1 2.1335 15.0275 7.04

ossio 2 1 12.8685 40.27
3 1 12.954 33.34
4 1 13.2455 27.86
8 1 14.621 15.82
10 1 15.126 13.85
20 1 19.009 8.91

osspcsamp 2 1 6.681 20.91
3 1 7.369 18.97
4 1 8.466 17.80
8 1 12.81 13.86
10 1 11.29 10.33
20 1 15.5105 7.27

osshwcsamp 2 1 6.743 21.10
3 1 7.231 18.61
4 1 7.5705 15.92
8 1 8.591 9.30
10 1 11.519 10.54
20 1 15.673 7.35

Table 14: Benchmark results using O | SS as performance metric collector for IOR: median times
from 10 runs in seconds.

10.5 Conclusion
1. Do we need root access?

No.

2. Is a daemon necessary?
No.

3. Is the tool usable with MPI/threads?
Yes, it even offers special wrappers for the usage with MPI.

4. What metrics do I get?
Depending on the type of experiment used, one can get information on program counters,
hardware counters, call path sampling, IO, MPI call tracing, memory tracking, pthread call
paths and timings, OpenMP idle, and barrier and barrier wait times.

5. What is the overhead?
Strongly dependent on type of the experiment used, but generally high.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

43/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

6. What are the use-cases?
Usable for profiling applications.

7. How is the tool integratable in the batch system and for the user?
O | SS is used over the command line with any executable. In total there are four user
interface options: batch, command line interface, graphical user interface, and Python
scripting API.

8. Where is the tool available (architecture, OS, . . .)?
O | SS is usable on both single node and large scale Intel, AMD, ARM, Intel Xeon Phi,
PowerPC, Power8, GPU processor based systems, as well as Cray and IBM Blue Gene
platforms.

9. Does the tool trace/sample?
Both, depending on the experiment.

10. How is the analysis data accessible?
Traces are accessible in Open Trace Format (OTF). Other data is stored in a special format,
which can be viewed with one of the delivered viewers or exported as CSV with visualization
instructions. Some experiments also have an ASCII report printed directly to stdout.

10.6 Remarks
The shared library support in O | SS is limited and the normal manner of running experiments
does not work. One must link the collectors into the static executable. Currently O | SS has static
support on Cray and the Blue Gene P/Q platforms. For that, one must relink the application
with the osslink command to add support for the collectors. However, when the execution of the
statically linked executable with the O | SS collectors is linked, the workflow would be different.
Since more flexible convenience scripts cannot be used, in order to change the arguments to the
experiments one must set an environment variable (Ref. [12], p. 133).

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

44/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

11 Metrics Overview
In this section we briefly list the essential metrics for our use case, as well as the usage outline of
aforementioned tools in order to obtain the corresponding metric(s).

Base information

• Requested and received number of nodes,

• requested walltime,

• requested memory and number of cores,

CPU: static data (lscpu and partly /procfs/cpuinfo)

• CPU model,

• number of sockets on a node, cores per socket, hardware threads per core,

• number of NUMA nodes and which cores are belonging to them,

• maximum (turbo boost frequency) and minimum CPU frequency,

• cache sizes (L1d/L1i, L2, L3),

• instruction set architecture (SSE, AVX, AVX2),

• cache alignment.

CPU: dynamic data (lscpu and /proc/cpuinfo)

• Core frequency

Memory: static data (/proc/meminfo or GNU time)

• MemTotal, SwapTotal, page size

Memory: dynamic data (pidstat, sar, /proc/meminfo, /proc/pid/stat)

• MemFree (/proc/meminfo, sar -r),

• MemUsed per node (sar -r),

• SwapFree, SwapUsed, SwapUsed in percent (/proc/meminfo, sar -S),

• SwapUsed, SwapUsed in percent (sar -S),

• the total number of swaps of the completed process (GNU time),

• active and inactive memory (/proc/meminfo, sar -r),

• buffered and cached memory (/proc/meminfo, sar -r),

• high water mark of RAM / maximum resident set size (VmHWM in /proc/pid/status,
GNU time),

• current resident set size (VmRss in /proc/pid/status, pidstat -r),

• current virtual memory size (VmSize in /proc/pid/status, pidstat -r),

• peak virtual memory size (VmPeak in /proc/pid/status),

• numa_hit, numa_miss, numa_foreign (/proc/vmstat).

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

45/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

Processes, jobs (GNU time, pidstat, sar, or procfs)

• PID of the job (pidstat -C, pgrep),

• CPU number(s), on which the job runs (pidstat -C),

• number of threads in this process (/proc/pid/status or pidstat -v),

• wall clock time of the completed process/job (summary given by GNU time),

• user and system time (without the time running on a virtual processor; sar -u, GNU time,
procfs),

• user and system time (including the time running on a virtual processor; sar -u, procfs),

• iowait and idle time (sar -u, procfs),

• voluntary and involuntary context switches (summary given by GNU time, /proc/pid/status,
pidstat -v).

Paging

• Major andminor page faults (the sum over the process is given by GNU time, /proc/pid/stat,
pidstat -r, sar -B),

• page in / page out (sar -B),

IO (disc and network)

• File system input / output (GNU time),

• bread/s, bwrtn/s: total amount of data, which is send to or received from disc (sar -b),

• si, so: amount of memory which was swapped from / to disk (per second; vmstat),

• rxpck/s, txpck/s: amount of packets, which are sent or received in one second (sar -n),

• rxkB/s, txkB/s: amount of kbytes, which are sent or received in one second (sar -n),

• data transfer from one process to another (specified) process (in MB; Intel MPI),

• data transfer actions from one process to another (specified) process (Intel MPI),

• data transfer and data transfer actions listed by MPI functions (Intel MPI),

• amount of time the data transfer needed (min/max/avrg/total; Intel MPI),

• size of every message (Intel MPI).

System

• Load average (if non-shared nodes; 1, 5, 15 minutes; /proc/loadaverage, sar -q, uptime).

Hardware counters
• See Appendices A, B (Perf and PAPI events) and C (Hardware Performance Groups and
Counters of LIKWID).

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

46/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

12 Conclusion
In the first part of Deliverable 2.2, a selection of tools (based on the preceding evaluation in
Deliverable 2.1 – “Concise Overview of Performance Metrics and Tools”) as well their primary
usage examples have been studied. This will help towards establishing a functional specification
to be used for the implementation of the backend of the toolkit.

From our investigations and the assessment the following tools seem to be more suitable to be
used for the toolkit:

• GNU time for CPU and wall-clock times and memory usage information,

• The proc file system for CPU time information and memory usage,

• Perf ’s sub command perf stat for performance counter information for non-MPI cases,

• LIKWID for hardware performance counters for MPI and non-MPI applications,

• Darshan for detailed IO statistics and patterns for MPI applications.

It is worth mentioning that sar, pidstat, mpstat, iostat, and vmstat are appropriate tools
for the backend as well. Nevertheless, they collect their information from procfs and gather
metrics only in intervals of integer time stamps. Therefore, it might be more preferable to gather
information directly from the procfs.

As also measured during our benchmarks, the sub command perf record has a very high over-
head for the toolkit. Similarly, Open | SpeedShop shows a substantial overhead; additionally we
had to address several software dependency issues during its installation.

Intel MPI (if present) provides a simple usage model for MPI performance analysis. Nonetheless,
one drawback of Intel MPI is that the binaries need to be compiled by the Intel compilers, which
might fail as for example in the BQCD benchmark program, and may not produce the optimal
binaries for the users. This would severely limit the generality of the usage of the toolkit.

Another point of concern for our use cases is that the desired tool should have the possibility of
integration with the batch system in conjunction with a system-wide performance data gathering
daemon or framework. This will impose additional restrictions, since the tool should initialize,
run, integrate the results, and terminate (or eventually fail) silently. GNU time and the proc
filesystem due to their usage models are seemingly better choices regarding this matter. A further
study regarding this theme will be presented in the second part of this deliverable.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

47/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

List of Tables
1 Benchmark results (in seconds) using procfs as performance metric collector for

BQCD and IOR. 9
2 Benchmark results (in seconds) using vmstat as performance metric collector for

BQCD and IOR. 12
3 Benchmark results (in seconds) using GNU time as performance metric collector

for BQCD. 13
4 Benchmark results (in seconds) using GNU time as performance metric collector

for IOR. 14
5 Benchmark results (in seconds) using SAR as performance metric collector for

BQCD. 17
6 Benchmark results (in seconds) using SAR as performance metric collector for IOR. 18
7 Benchmark results (in seconds) using perf as performance metric collector for

BQCD and IOR. Median (M) and average (A) times from 10 runs. 23
8 Benchmark results (in seconds) using likwid-mpirun as performance metric col-

lector for BQCD. 28
9 Benchmark results (in seconds) using likwid-mpirun as performance metric col-

lector for IOR. 29
10 Benchmark results (average of five runs) using Darshan as performance metric

collector for BQCD and IOR. 31
11 Benchmark results (in seconds) using Intel MPI’s statistics gathering mode as

performance metric collector for STREAM. 38
12 Accessibility of O | SS experiments. 40
13 Benchmark results using O | SS as performance metric collector for BQCD: median

times from 10 runs in seconds. 42
14 Benchmark results using O | SS as performance metric collector for IOR: median

times from 10 runs in seconds. 43

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

48/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

A Perf User Space Events
The following list has been generated on a Dell Latitude E7470 laptop with an Intel Core i5-6200U
CPU.

branch - instructions OR branches [Hardware event]
branch - misses [Hardware event]
bus - cycles [Hardware event]
cache - misses [Hardware event]

5 cache - references [Hardware event]
cpu - cycles OR cycles [Hardware event]
instructions [Hardware event]
ref - cycles [Hardware event]
alignment - faults [Software event]

10 bpf - output [Software event]
context - switches OR cs [Software event]
cpu - clock [Software event]
cpu - migrations OR migrations [Software event]
dummy [Software event]

15 emulation - faults [Software event]
major - faults [Software event]
minor - faults [Software event]
page - faults OR faults [Software event]
task - clock [Software event]

20 L1 -dcache -load - misses [Hardware cache event]
L1 -dcache - loads [Hardware cache event]
L1 -dcache - stores [Hardware cache event]
L1 -icache -load - misses [Hardware cache event]
LLC -load - misses [Hardware cache event]

25 LLC - loads [Hardware cache event]
LLC -store - misses [Hardware cache event]
LLC - stores [Hardware cache event]
branch -load - misses [Hardware cache event]
branch - loads [Hardware cache event]

30 dTLB -load - misses [Hardware cache event]
dTLB - loads [Hardware cache event]
dTLB -store - misses [Hardware cache event]
dTLB - stores [Hardware cache event]
iTLB -load - misses [Hardware cache event]

35 iTLB - loads [Hardware cache event]
node -load - misses [Hardware cache event]
node - loads [Hardware cache event]
node -store - misses [Hardware cache event]
node - stores [Hardware cache event]

40 branch - instructions OR cpu/branch - instructions / [Kernel PMU event]
branch - misses OR cpu/branch - misses / [Kernel PMU event]
bus - cycles OR cpu/bus - cycles / [Kernel PMU event]
cache - misses OR cpu/cache - misses / [Kernel PMU event]
cache - references OR cpu/cache - references / [Kernel PMU event]

45 cpu - cycles OR cpu/cpu - cycles / [Kernel PMU event]
cstate_core /c3 - residency / [Kernel PMU event]
cstate_core /c6 - residency / [Kernel PMU event]
cstate_core /c7 - residency / [Kernel PMU event]
cstate_pkg /c2 - residency / [Kernel PMU event]

50 cstate_pkg /c3 - residency / [Kernel PMU event]
cstate_pkg /c6 - residency / [Kernel PMU event]
cstate_pkg /c7 - residency / [Kernel PMU event]
cycles -ct OR cpu/cycles -ct/ [Kernel PMU event]
cycles -t OR cpu/cycles -t/ [Kernel PMU event]

55 el - abort OR cpu/el - abort / [Kernel PMU event]
el - capacity OR cpu/el - capacity / [Kernel PMU event]
el - commit OR cpu/el - commit / [Kernel PMU event]
el - conflict OR cpu/el - conflict / [Kernel PMU event]
el - start OR cpu/el - start / [Kernel PMU event]

60 instructions OR cpu/ instructions / [Kernel PMU event]
intel_bts // [Kernel PMU event]
intel_pt // [Kernel PMU event]
mem - loads OR cpu/mem - loads / [Kernel PMU event]
mem - stores OR cpu/mem - stores / [Kernel PMU event]

65 msr/ aperf / [Kernel PMU event]
msr/ mperf / [Kernel PMU event]
msr/ pperf / [Kernel PMU event]
msr/smi/ [Kernel PMU event]
msr/tsc/ [Kernel PMU event]

70 tx - abort OR cpu/tx - abort / [Kernel PMU event]
tx - capacity OR cpu/tx - capacity / [Kernel PMU event]
tx - commit OR cpu/tx - commit / [Kernel PMU event]
tx - conflict OR cpu/tx - conflict / [Kernel PMU event]
tx - start OR cpu/tx - start / [Kernel PMU event]

75 rNNN [Raw hardware event descriptor]
cpu/t1=v1[,t2=v2 ,t3 ...]/ modifier [Raw hardware event descriptor]
mem:<addr >[/ len][: access] [Hardware breakpoint]

Listing 3: Perf user space events.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

49/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

B PAPI Events
Below, PAPI events on an Intel Xeon E5-2650 v4 CPU are listed.

PAPI_L1_DCM 0 x80000000 Yes No Level 1 data cache misses
PAPI_L1_ICM 0 x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_ICM 0 x80000003 Yes No Level 2 instruction cache misses
PAPI_L2_TCM 0 x80000007 Yes No Level 2 cache misses

5 PAPI_L3_TCM 0 x80000008 Yes No Level 3 cache misses
PAPI_CA_SNP 0 x80000009 Yes No Requests for a snoop
PAPI_CA_SHR 0 x8000000a Yes No Requests for exclusive access to shared cache line
PAPI_CA_CLN 0 x8000000b Yes No Requests for exclusive access to clean cache line
PAPI_CA_INV 0 x8000000c Yes No Requests for cache line invalidation

10 PAPI_CA_ITV 0 x8000000d Yes No Requests for cache line intervention
PAPI_L3_LDM 0 x8000000e Yes No Level 3 load misses
PAPI_TLB_IM 0 x80000015 Yes No Instruction translation lookaside buffer misses
PAPI_L1_LDM 0 x80000017 Yes No Level 1 load misses
PAPI_L1_STM 0 x80000018 Yes No Level 1 store misses

15 PAPI_L2_LDM 0 x80000019 Yes No Level 2 load misses
PAPI_L2_STM 0 x8000001a Yes No Level 2 store misses
PAPI_PRF_DM 0 x8000001c Yes No Data prefetch cache misses
PAPI_MEM_WCY 0 x80000024 Yes No Cycles Stalled Waiting for memory writes
PAPI_STL_ICY 0 x80000025 Yes No Cycles with no instruction issue

20 PAPI_STL_CCY 0 x80000027 Yes No Cycles with no instructions completed
PAPI_FUL_CCY 0 x80000028 Yes No Cycles with maximum instructions completed
PAPI_BR_CN 0 x8000002b Yes No Conditional branch instructions
PAPI_BR_NTK 0 x8000002d Yes No Conditional branch instructions not taken
PAPI_BR_MSP 0 x8000002e Yes No Conditional branch instructions mispredicted

25 PAPI_TOT_INS 0 x80000032 Yes No Instructions completed
PAPI_LD_INS 0 x80000035 Yes No Load instructions
PAPI_SR_INS 0 x80000036 Yes No Store instructions
PAPI_BR_INS 0 x80000037 Yes No Branch instructions
PAPI_RES_STL 0 x80000039 Yes No Cycles stalled on any resource

30 PAPI_TOT_CYC 0 x8000003b Yes No Total cycles
PAPI_L2_DCA 0 x80000041 Yes No Level 2 data cache accesses
PAPI_L2_DCR 0 x80000044 Yes No Level 2 data cache reads
PAPI_L3_DCR 0 x80000045 Yes No Level 3 data cache reads
PAPI_L2_DCW 0 x80000047 Yes No Level 2 data cache writes

35 PAPI_L3_DCW 0 x80000048 Yes No Level 3 data cache writes
PAPI_L2_ICH 0 x8000004a Yes No Level 2 instruction cache hits
PAPI_L2_ICA 0 x8000004d Yes No Level 2 instruction cache accesses
PAPI_L3_ICA 0 x8000004e Yes No Level 3 instruction cache accesses
PAPI_L2_ICR 0 x80000050 Yes No Level 2 instruction cache reads

40 PAPI_L3_ICR 0 x80000051 Yes No Level 3 instruction cache reads
PAPI_L3_TCA 0 x8000005a Yes No Level 3 total cache accesses
PAPI_L2_TCW 0 x8000005f Yes No Level 2 total cache writes
PAPI_L3_TCW 0 x80000060 Yes No Level 3 total cache writes
PAPI_REF_CYC 0 x8000006b Yes No Reference clock cycles

45 PAPI_L1_DCM 0 x80000000 Yes No Level 1 data cache misses
PAPI_L1_ICM 0 x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0 x80000002 Yes Yes Level 2 data cache misses
PAPI_L2_ICM 0 x80000003 Yes No Level 2 instruction cache misses
PAPI_L1_TCM 0 x80000006 Yes Yes Level 1 cache misses

50 PAPI_L2_TCM 0 x80000007 Yes No Level 2 cache misses
PAPI_L3_TCM 0 x80000008 Yes No Level 3 cache misses
PAPI_CA_SNP 0 x80000009 Yes No Requests for a snoop
PAPI_CA_SHR 0 x8000000a Yes No Requests for exclusive access to shared cache line
PAPI_CA_CLN 0 x8000000b Yes No Requests for exclusive access to clean cache line

55 PAPI_CA_INV 0 x8000000c Yes No Requests for cache line invalidation
PAPI_CA_ITV 0 x8000000d Yes No Requests for cache line intervention
PAPI_L3_LDM 0 x8000000e Yes No Level 3 load misses
PAPI_TLB_DM 0 x80000014 Yes Yes Data translation lookaside buffer misses
PAPI_TLB_IM 0 x80000015 Yes No Instruction translation lookaside buffer misses

60 PAPI_L1_LDM 0 x80000017 Yes No Level 1 load misses
PAPI_L1_STM 0 x80000018 Yes No Level 1 store misses
PAPI_L2_LDM 0 x80000019 Yes No Level 2 load misses
PAPI_L2_STM 0 x8000001a Yes No Level 2 store misses
PAPI_PRF_DM 0 x8000001c Yes No Data prefetch cache misses

65 PAPI_MEM_WCY 0 x80000024 Yes No Cycles Stalled Waiting for memory writes
PAPI_STL_ICY 0 x80000025 Yes No Cycles with no instruction issue
PAPI_FUL_ICY 0 x80000026 Yes Yes Cycles with maximum instruction issue
PAPI_STL_CCY 0 x80000027 Yes No Cycles with no instructions completed
PAPI_FUL_CCY 0 x80000028 Yes No Cycles with maximum instructions completed

70 PAPI_BR_UCN 0 x8000002a Yes Yes Unconditional branch instructions
PAPI_BR_CN 0 x8000002b Yes No Conditional branch instructions
PAPI_BR_TKN 0 x8000002c Yes Yes Conditional branch instructions taken
PAPI_BR_NTK 0 x8000002d Yes No Conditional branch instructions not taken
PAPI_BR_MSP 0 x8000002e Yes No Conditional branch instructions mispredicted

75 PAPI_BR_PRC 0 x8000002f Yes Yes Conditional branch instructions correctly predicted
PAPI_TOT_INS 0 x80000032 Yes No Instructions completed
PAPI_LD_INS 0 x80000035 Yes No Load instructions
PAPI_SR_INS 0 x80000036 Yes No Store instructions
PAPI_BR_INS 0 x80000037 Yes No Branch instructions

80 PAPI_RES_STL 0 x80000039 Yes No Cycles stalled on any resource
PAPI_TOT_CYC 0 x8000003b Yes No Total cycles
PAPI_LST_INS 0 x8000003c Yes Yes Load/ store instructions completed
PAPI_L2_DCA 0 x80000041 Yes No Level 2 data cache accesses
PAPI_L3_DCA 0 x80000042 Yes Yes Level 3 data cache accesses

85 PAPI_L2_DCR 0 x80000044 Yes No Level 2 data cache reads
PAPI_L3_DCR 0 x80000045 Yes No Level 3 data cache reads
PAPI_L2_DCW 0 x80000047 Yes No Level 2 data cache writes
PAPI_L3_DCW 0 x80000048 Yes No Level 3 data cache writes
PAPI_L2_ICH 0 x8000004a Yes No Level 2 instruction cache hits

90 PAPI_L2_ICA 0 x8000004d Yes No Level 2 instruction cache accesses
PAPI_L3_ICA 0 x8000004e Yes No Level 3 instruction cache accesses
PAPI_L2_ICR 0 x80000050 Yes No Level 2 instruction cache reads
PAPI_L3_ICR 0 x80000051 Yes No Level 3 instruction cache reads
PAPI_L2_TCA 0 x80000059 Yes Yes Level 2 total cache accesses

95 PAPI_L3_TCA 0 x8000005a Yes No Level 3 total cache accesses
PAPI_L2_TCR 0 x8000005c Yes Yes Level 2 total cache reads

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

50/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

PAPI_L3_TCR 0 x8000005d Yes Yes Level 3 total cache reads
PAPI_L2_TCW 0 x8000005f Yes No Level 2 total cache writes
PAPI_L3_TCW 0 x80000060 Yes No Level 3 total cache writes

100 PAPI_SP_OPS 0 x80000067 Yes Yes Floating point operations ; optimized to count scaled single precision vector operations
PAPI_DP_OPS 0 x80000068 Yes Yes Floating point operations ; optimized to count scaled double precision vector operations
PAPI_VEC_SP 0 x80000069 Yes Yes Single precision vector /SIMD instructions
PAPI_VEC_DP 0 x8000006a Yes Yes Double precision vector /SIMD instructions
PAPI_REF_CYC 0 x8000006b Yes No Reference clock cycles

Listing 4: PAPI events.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

51/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

C Hardware Performance Groups and Counters of LIKWID
The following predefined hardware performance groups and metrics can be obtained by LIKWID.

• BRANCH: CPI, Branch rate, Branch misprediction rate, Branch misprediction ratio, Instruc-
tions per branch.

• CLOCK: Uncore Clock [MHz], CPI, Energy [J], Power [W], Energy DRAM [J], Power DRAM
[W].

• DATA: Load to store ratio.

• FALSE_SHARE: Local LLC false sharing [MByte], Local LLC false sharing rate.

• FLOPS_AVX: Packed SP MFLOP/s, Packed DP MFLOP/s.

• FLOPS_DP: DP MFLOP/s, AVX DP MFLOP/s, Packed MUOPS/s, Scalar MUOPS/s.

• FLOPS_SP: SP MFLOP/s, AVX SP MFLOP/s, Packed MUOPS/s, Scalar MUOPS/s.

• L2: L2D load bandwidth [MBytes/s], L2D load data volume [GBytes], L2D evict bandwidth
[MBytes/s], L2D evict data volume [GBytes], L2 bandwidth [MBytes/s], L2 data volume
[GBytes].

• L2CACHE: L2 request rate, L2 miss rate, L2 miss ratio.

• L3: The same as for L2, but just for L3.

• L3CACHE: The same as for L2, but just for L3.

• TLB_INSTR: L1 ITLB misses, L1 ITLB miss rate, L1 ITLB miss duration [Cyc].

• TLB_DATA: L1 DTLB load misses, L1 DTLB load miss rate, L1 DTLB load miss duration
[Cyc], L1 DTLB store misses, L1 DTLB store miss rate, L1 DTLB store miss duration
[Cyc].

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

52/53

Deliverable 2.2
Functional Specification of the Backend
Part 1: Pre-Selection of the Metric Collection Tools

References
[1] “BQCD download : High Performance Computing : Universität Hamburg” [Online]. url:

https://www.rrz.uni-hamburg.de/services/hpc/bqcd (Retrieved: 01 August 2017).
[2] LLNL. “LLNL/ior: Parallel filesystem I/O benchmark” [Online]. url: https://github.

com/LLNL/ior (Retrieved: 01 August 2017).
[3] S. Godard. “SYSSTAT” [Online]. url: http://sebastien.godard.pagesperso-orange.

fr/ (Retrieved: 01 August 2017).
[4] Brendan Gregg. “Linux perf Examples” [Online]. url: http://www.brendangregg.com/

perf.html#Visualizations (Retrieved: 01 August 2017).
[5] Brendan Gregg. “Linux Performance” [Online]. url: http://www.brendangregg.com/

linuxperf.html (Retrieved: 01 August 2017).
[6] J. Treibig, G. Hager, and G. Wellein. “LIKWID: A lightweight performance-oriented tool

suite for x86 multicore environments”. In: Proceedings of PSTI2010, the First International
Workshop on Parallel Software Tools and Tool Infrastructures. San Diego CA, 2010.

[7] RRZE-HPC. “RRZE-HPC/likwid: Performance monitoring and benchmarking suite” [On-
line]. url: https://github.com/RRZE-HPC/likwid (Retrieved: 01 August 2017).

[8] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert Latham,
and Robert Ross. “Understanding and Improving Computational Science Storage Access
Through Continuous Characterization”. In: Trans. Storage 7.3 (October 2011), 8:1–8:26.
issn: 1553-3077. doi: 10.1145/2027066.2027068. url: http://doi.acm.org/10.
1145/2027066.2027068.

[9] “Darshan” [Online]. url: https://www.mcs.anl.gov/research/projects/darshan/
(Retrieved: 01 August 2017).

[10] Intel Corporation. “Intel R© MPI Library Developer Reference for Linux OS”. Tech. rep.
May 10, 2017. url: https://software.intel.com/en-us/mpi-developer-reference-
linux (Retrieved: 01 August 2017).

[11] Intel Corporation. “Intel R© MPI Library for Linux OS Installation Guide”. Tech. rep.
May 10, 2017. url: https://software.intel.com/sites/default/files/managed/
7d/40/intelmpi-2017-update2-install-guide-linux.pdf (Retrieved: 01 August
2017).

[12] Contributions from Krell Institute, LANL, LLNL, SNL. “Open|SpeedShop Reference
Guide”. Version 2.3.0. November 12, 2016. url: https://openspeedshop.org/wp-
content/uploads/2016/11/OpenSpeedShop_Reference_Guide_v230_v2.pdf (Retrieved:
01 August 2017).

[13] Alexandre Eichenberger et al. “OMPT and OMPD: OpenMP Tools Application Program-
ming Interfaces for Performance Analysis and Debugging”. Tech. rep. April 24, 2013. url:
http://www.openmp.org/wp-content/uploads/ompt-tr.pdf (Retrieved: 01 August
2017).

[14] “Paradyn/Dyninst - Welcome | Putting the Performance in High Performance Computing”
[Online]. url: http://www.dyninst.org/ (Retrieved: 01 August 2017).

[15] “MRNet - Multicast Reduction Network” [Online]. url: http://www.paradyn.org/
mrnet/ (Retrieved: 01 August 2017).

[16] HPCToolkit. “HPCToolkit/libmonitor: HPCToolkit performance tools: libmonitor - a
substrate for monitoring tools” [Online]. url: https : / / github . com / HPCToolkit /
libmonitor (Retrieved: 01 August 2017).

[17] “PAPI” [Online]. url: http://icl.utk.edu/papi/ (Retrieved: 01 August 2017).

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

53/53

https://www.rrz.uni-hamburg.de/services/hpc/bqcd
https://github.com/LLNL/ior
https://github.com/LLNL/ior
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
http://www.brendangregg.com/perf.html#Visualizations
http://www.brendangregg.com/perf.html#Visualizations
http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/linuxperf.html
https://github.com/RRZE-HPC/likwid
http://dx.doi.org/10.1145/2027066.2027068
http://doi.acm.org/10.1145/2027066.2027068
http://doi.acm.org/10.1145/2027066.2027068
https://www.mcs.anl.gov/research/projects/darshan/
https://software.intel.com/en-us/mpi-developer-reference-linux
https://software.intel.com/en-us/mpi-developer-reference-linux
https://software.intel.com/sites/default/files/managed/7d/40/intelmpi-2017-update2-install-guide-linux.pdf
https://software.intel.com/sites/default/files/managed/7d/40/intelmpi-2017-update2-install-guide-linux.pdf
https://openspeedshop.org/wp-content/uploads/2016/11/OpenSpeedShop_Reference_Guide_v230_v2.pdf
https://openspeedshop.org/wp-content/uploads/2016/11/OpenSpeedShop_Reference_Guide_v230_v2.pdf
http://www.openmp.org/wp-content/uploads/ompt-tr.pdf
http://www.dyninst.org/
http://www.paradyn.org/mrnet/
http://www.paradyn.org/mrnet/
https://github.com/HPCToolkit/libmonitor
https://github.com/HPCToolkit/libmonitor
http://icl.utk.edu/papi/

	Introduction and Rationale
	procfs
	Tasks and Metrics
	Benchmark Runs
	Conclusion
	Remarks

	vmstat
	Tasks and Metrics
	Installation and Requirements
	Benchmark Runs
	Conclusion
	Remarks

	GNU time
	Tasks and Metrics
	Benchmark Runs
	Conclusion
	Remarks

	Sysstat
	SAR
	Metrics
	Benchmark Runs

	pidstat
	Metrics
	Benchmark Runs

	iostat
	Metrics

	Installation and Requirements
	Conclusion
	Remarks

	Perf
	Tasks
	Metrics
	Installation and Requirements
	Benchmark Runs
	Conclusion

	LIKWID
	likwid-perfctr
	likwid-topology
	likwid-pin
	likwid-mpirun
	Benchmark Runs
	Installation and Requirements
	Conclusion

	Darshan
	Tasks and Metrics
	Installation and Requirements
	Benchmark Runs
	Example Output
	Conclusion

	Intel MPI
	Tasks and Metrics
	Installation and Requirements
	Benchmark Runs
	Conclusion

	Open|SpeedShop
	Tasks
	Metrics
	Installation and Requirements
	Benchmark Runs
	Conclusion
	Remarks

	Metrics Overview
	Conclusion
	List of Tables
	Perf User Space Events
	PAPI Events
	Hardware Performance Groups and Counters of LIKWID
	Bibliography

