
PfiT - The User’s Guide
Documentation of the PfiT Reports and the raw metrics

Best practices

August 19, 2020

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

PfiT - The User’s Guide

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

2/78

Contents

1 Introduction 5

2 User’s Guide 7
2.1 Explanation of the metrics of the reports 7

2.1.1 Text report . 7
2.1.2 PDF report . 16

2.2 Sources of metrics . 17
2.3 Best practices for users . 23

2.3.1 Best practices . 23
2.3.2 General recommendations and checklists 27
2.3.3 Using accelerators(OpenACC) . 36
2.3.4 OpenMP . 41
2.3.5 CUDA . 44
2.3.6 MPI . 55
2.3.7 C source 5 point stencil . 63

Bibliography . 69

A Example PDF Report 73

3

PfiT - The User’s Guide

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

4/78

Chapter 1

Introduction

High-Performance-Computing (HPC) has become a standard research tool in many sci-
entific disciplines. Research without at least supporting HPC calculations is becoming
increasingly rare in the natural and engineering sciences. On top of that, new disci-
plines are discovering HPC as an asset to their research, for example in the areas of
bioinformatics and social sciences. This means that more and more scientists without a
deep understanding of the architecture and the functioning of such systems start using
HPC resources. This knowledge gap is further enlarged as the complexity of HPC re-
sources increases and gains significant importance in the field of performance engineering.

Most scientists that are new to HPC run their applications on local Tier 3 systems
and are satisfied if their research problem can be solved on an available system in an
acceptable time frame. The missing knowledge with respect to performance measure-
ments will often lead to a lock-in, because they are not able to scale their calculations to
a Tier 2 or Tier 1 compute resource. At the same time, Tier 3 compute centers typically
lack sufficient human resources to work with each user individually on application perfor-
mance. In order to increase awareness for performance issues and enable users to assess
possible gains from performance improving measures, systematic, unified, and easily
understandable information on performance parameters should be provided across all
scientific communities. This especially pertains to the performance parameters of HPC
jobs and the importance of performance engineering since HPC cluster are very expensive
resources. This applies to the procurement of the hard- and software as well as for the
service of the system (especially the power supply), in which e.g. the overall energy costs
amount is located in a five year life cycle in the order of several hundred thousand euros
for a typical Tier 3 system. To reduce these costs, jobs should have for example lower
run time to save energy or less waiting time until starting the job for better utilization
of the cluster. These goals can e.g. be reached, if the user gets insight into the runtime
behaviour of its program for example via different kinds of reports, including additional
automatic evaluation, interpretation and presentation of the performance metric values.

Although the usage of many performance measurement tools is mostly straightforward,
the serious disadvantage is the missing explanation of the results in a clear and simple
manner. Often the interpretation of generated reports requires expert knowledge – this
makes the profiling for normal cluster users nearly useless since they usually don’t have

5

PfiT - The User’s Guide

the background to interpret the results. By automatically assembling all data provided
by available tools into a single centrally organized framework it will be much easier for
the user (and for administrators, too) to identify potential performance bottlenecks or
pathological cases. In addition, with the help of an all-in-one monitoring, profiling and
reporting tool, the user acceptance for code optimizations might be drastically increased,
especially when the code tuning shows a considerable performance boost. Additionally,
the interface may also help to overcome the gap of understanding and communication
between experts and end users by incorporating all data into a shared documentation
system.

In order to achieve these goals a monitoring, profiling and reporting tool set, partly
based on existing solutions, was implemented in the scope of this project. This tool
set will automatically collect performance metrics and present them to researchers in
easy to understand summaries or as a timeline (in appropriate reports). The tool set is
completed by a documentation and best practices information, detailing, as applicable,
measures regarding further investigation of the problem, recommended changes to the
job submission, and promising performance engineering targets.

This document presents the user’s guide of the PfiT system. In this guide we will
describe the text report as well as the PDF report and all metrices they present. Further-
more, the recommendations of the recommendation system will be presented as well as
the criteria, when a recommendation should be made. Finally, best practices to create
(highly) optimized programs are outlined.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

6/78

Chapter 2

User’s Guide

2.1 Explanation of the metrics of the reports
This section covers the description of the metrics of the Text- and PDF report. In the first
subsection the metrics of the Text report will be discussed, and in the second subsection
the metrics of the PDF report. In both subsections the metrics are divided into the
following metric classes in the node view:

• Batch job summary,

• CPU (mean values),

• main memory (mean and maximum values),

• swap space (mean and maximum values),

• IO (work, NFS, scratch; mean values),

• network (infiniband, ethernet: mean values),

• GPU (if exists; mean values).

At the end of each Text report a job summary will be presented regarding selected metrics,
for example, CPU mean, main memory high water mark, swap usage).

2.1.1 Text report
The Text report should aid the user to identify pathological performance problems, for
example, low CPU usage or swap activity. To serve this need various metric values are
reported. Based on these values recommendations are automatically formulated to guide
the user to improve the program. In this section the metrics of the Text report will be
explained, in which we make the distinction between the node metric view (mean or
maximum values over all timesteps of the job for every single node of the job) and the
summary view (mean values over all job nodes and job timesteps). The calculation of
these Text report metrics is described in subsection 2.2. The explanation of these metrics
will be illustrated by a sample Text report of a job (condensed form) which ran on only
one GPU node (see listing 2.1). In this small example all elements of the report will be
explained.

7

PfiT - The User’s Guide

Batch Job Information

User *******
JobId *******
Jobname *******
Queue / Partition gpu
Numer nodes 1
Nodelist node323
Requested wall - clock time 00 -11:59:00
Elapsed wall - clock time 00 -11:59:25
Submit time Sun Sep 29 19:17:59 CEST 2019
Start time Sun Sep 29 19:17:59 CEST 2019
End time Mon Sep 30 07:17:24 CEST 2019

Per node utilization (mean values + memory high water mark (hwm))
+---------+----------+----------+----------+----------+----------+------------+
	CPU	memory used	swap used			
node	usage	idle	iowait	hwm	mean	mean
	(in %)	(in %)	(in %)	GiB	GiB	GiB
+---------+----------+----------+----------+----------+----------+------------+						
node323	198.38	1.62	0.00	2.08	2.06	0.000000
+---------+----------+----------+----------+----------+----------+------------+						
1	198.38	1.62	0.00	2.08	2.06	0.000000
+---------+----------+----------+----------+----------+----------+------------+

IO utilization (I) (mean values)
+---------+----------+----------+----------+----------+
	/work			
	read	write		
node	data	ops	data	ops
	MiB/s	1000/ s	MiB/s	1000/ s
+---------+----------+----------+----------+----------+				
node323	0.03	0.00	0.47	0.00
+---------+----------+----------+----------+----------+				
1	0.03	0.00	0.47	0.00
+---------+----------+----------+----------+----------+

IO utilization (II) (mean values)
+---------+----------+----------+----------+----------+
	/home	/ scratch		
	read	write	read	write
node	data	data	data	data
	MiB/s	MiB/s	MiB/s	MiB/s
+---------+----------+----------+----------+----------+				
node323	0.00	0.09	0.00	0.00
+---------+----------+----------+----------+----------+				
1	0.00	0.09	0.00	0.00

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

8/78

PfiT - The User’s Guide

+---------+----------+----------+----------+----------+

Network utilization (mean values)
+---------+----------+----------+----------+----------+
	Infiniband			
	received	sent		
node	data	ops	data	ops
	MiB/s	1000/ s	MiB/s	1000/ s
+---------+----------+----------+----------+----------+				
node323	0.06	0.09	0.48	0.14
+---------+----------+----------+----------+----------+

Per GPU utilization (mean values)
+---------+----------+--------------+-----------------+
| | GPU | GPU usage | GPU memory used |
| node | no. | (in %) | GiB |
+---------+----------+--------------+-----------------+
| node323 | 0 | 72.17 | 0.24 |
| | 1 | 64.58 | 0.21 |
+---------+----------+--------------+-----------------+
| 1 | 2 | 136.75 | 0.44 |
+---------+----------+--------------+-----------------+

Recommendations

Max job memory utilization (Memory High Water Mark):
The programm used just a small portion of the host RAM memory (less than one
quarter of the total RAM)! If possible use a partition with fewer memory for
better utilization of the RAM

Mean job memory utilization :
The programm used just a small portion of the host RAM memory (less than one
quarter of the total RAM)! If possible use a partition with fewer memory for
better utilization of the RAM (i.e. if the high water mark fits into memory).

Elapsed wall clock time:
The used wall clock time of the job was larger than the requested wall clock
time. As a consequence the job has not finished ! Adjustment of the runtime is
needed ! Please try to caclulated the job runtime more precisely !

Job summary

Elapsed wall clock time 100.1 % (00 -11:59:25 of requested walltime)
Mean CPU usage 100.0 % (16.0 of 16.0 cores)

Mean Hyperthread usage 98.4 % (15.7 of 16.0 hyperthreads)

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

9/78

PfiT - The User’s Guide

Max. main memory used 3.3 % (2.1 of 62.8 GiB available memory)
Max. swap memory used 0.0 % (0.0 of 1.9 GiB available swap)

Max GPU memory usage 2.1 % (0.2 of 11.2 GiB available memory)

Listing 2.1: Example Text report

Batch job

The following metrics are collected by the batch system (for example Slurm) before
generating the report. These metrics should give a general overview of the job, for
example JobID, jobname, start and end time of the job, number of nodes and nodelist
of the job.

• User: The user identification string (e.g. user42),

• JobId, Jobname: These two metrics are the numerical and string job identifier.

• Queue/Partition: The well defined subset of nodes of the cluster, that the job
should run on (or parts of it). In general, every queue has its own architecture
characteristics, e.g. a partition with the example name big with 256 GiB in compar-
ision to a partition std with 64 GiB. Another example is the partition gpu which
contains nodes with additional graphic accelerator capability.

• Number nodes: Number of nodes of the cluster the job used (for example 32).

• Nodelist: The list of nodes of the cluster the job used. In Slurm an example list has
the following appearance: node[134-136,213-241] that means the job allocated the
nodes node134-node136 and node213-node241 (all in all 32 nodes). In this concrete
example only node323 was allocated.

• Requested and elapsed wall clock time: The requested wallclock time of the job
(maximum amount of user requested job run time) and the used runtime of the job
(elapsed runtime) in the format dd-hh:mm:ss. In this example the user requested
11 hours and 59 minutes (00-11:59:00) and the elapsed walltime was 11 hours, 59
minutes and 26 seconds (00-11:59:26). The additional 26 seconds is batch system
overhead, the program was finished exactly after 11 hours and 59 minutes.

• Submit, start and end time: Submit, start and end time of the job. In particular
submit and start time of the job can differ significantly, when the job waits for a
while in the batch queue. In this example submit and start time are identical (Sun
Sep 29 19:17:59 CEST 2019).

Node view

At the beginning of the presentation of the node view metrics the CPU, memory and
swap metrics will be discussed. For convenience the respective part of the report will be
copied at the beginning of the section.
Per node utilization (mean values + memory high water mark (hwm))
+---------+----------+----------+----------+----------+----------+------------+
| | CPU | memory used | swap used |

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

10/78

PfiT - The User’s Guide

| node | usage | idle | iowait | hwm | mean | mean |
| | (in %) | (in %) | (in %) | GiB | GiB | GiB |
+---------+----------+----------+----------+----------+----------+------------+
| node323 | 198.38 | 1.62 | 0.00 | 2.08 | 2.06 | 0.000000 |
+---------+----------+----------+----------+----------+----------+------------+
| 1 | 198.38 | 1.62 | 0.00 | 2.08 | 2.06 | 0.000000 |
+---------+----------+----------+----------+----------+----------+------------+

Listing 2.2: Per node utilization CPU main memory and swap (mean values + memory
high water mark (hwm))

node

• node: Name of every node of the job. In this job only one node is used, but if a job
uses more than one node, all nodes are listed one below another. In the last row
the number of used nodes of the job will be presented. Analogously, in this row
the sum of CPU usage, idle and iowait percentage over all nodes are listed below
the appropriate item. This is valid for the memory and swap metrics, IO, network
and GPU metrics, too.

CPU

• usage (in percent): CPU usage is the sum of the two raw metrics (CPU) user
and (CPU) system (see 2.2). This metric is given in percent and 100% is the
theoretically achievable time the CPU is in the user and system state over all cores
of a node and over the job runtime (i.e. over all time measurement points of the
job). The formula to compute the node percentage of the CPU usage is as follows:

cpu_usage_node

100 · n_cores_per_node · job_runtime
= runtime_percent_of_node. (2.1)

This formula has the following items:

– cpu_usage_node: Sum of all ticks of all cores of the node processes being in
user or system mode over the job runtime,

– n_cores_per_node: Number of cores of the node,
– job_runtime: Runtime of the job in seconds (more precisely: the difference

between the first and the last measurement time step in the job; in general
this value is smaller than the jobs runtime),

– usage_runtime_percent_of_node: The average runtime of all cores of the job
on the node in user and system mode (in per cent).

If on one core two or more hyperthreads are located, the cpu_usage_node value
often will be larger than 100%. The maximum value in the case of one core and
one hyperthread is 100%, in the case of two hyperthreads 200%, in the case of four
400%, etc. A value below 50% will be marked as problematic (pathologic) because
over one half of the node CPU time is wasted with other tasks than tasks in user
or system state (i.e. idle or iowait time).

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

11/78

PfiT - The User’s Guide

• idle (in percent): CPU idle denotes the accumulated value over all core ticks, when
every single core was in the idle state. That means the idle process was running
on the appropriate core(s), because no program was running on it. The formula
to calculate the node idle time is analogous to the cpu_usage case in which the
summation is over the raw metric (CPU) idle.

• iowait (in per cent): This metric denotes the time waiting for IO. The formula is
analogous to the above two formulas and sums over the raw metric iowait.

Main Memory / memory used

• High water mark (hwm; in GiB): The maximum value of the used main memory of
the node over all measurement points of the job (in the node view) and additionally
over all nodes over all measurement points of the job (in the summary view). The
formula to calculate the high water mark of node i (i ∈ {node1, ..., noden}) over all
measurement steps t ∈ T = {t0, t1, ..., tn} in the job uses the raw metric Resident
Set Size (rss) (see 2.2) and looks as follows:

hwmnodei
= max

t∈T
rssnodei

. (2.2)

In the example job the high water mark is 2.08 / 64 GiB.

• Mean memory value (mean; in GiB): To compute the mean value of the used
memory of a node over all measurement points of the job (in the node view)
and additionlly over all nodes and over all measurement points of the job (in the
summary view) the raw metric Resident Set Size (rss) is used, too. The formula
to calculate the mean memory value of the ith node over all measuremensteps
t ∈ T = {t0, t1, ..., tn} in the job has the following representation:

mean_memnodei
= 1

n + 1 ·
(∑

t∈T

rssnodei

)
. (2.3)

Mean memory and the memory high water mark can differ significantly from each
other because an application can use a very high amount of main memory over a
short period and then falls back into low main memory usage. Consequently, the
arithmetic mean over all time steps of the job of the node and the high water mark
can/will differ largely. A short example shall exemplify this: With a job runtime of
one hour and the constant memory usage of 10 GiB over the total runtime (except of
1 minute, where the main memory usage took the amount of 60 GiB), the memory
mean value is about 11 GiB, a value far away from 60 GiB. In the example the job
took 2.06 / 64 GiB mean memory, which is almost equal to the high water mark.

Swap / swap used

• High water mark swap (hwm; in GiB (to be implemented)): The maximum value of
the used swap of a single node over all measurement points t ∈ T = {t0, t1, ..., tn}
of the job (in the node view) and additionally over all nodes of the job and over
all measurement points of the job (in the job summary view). The raw metrics
this report parameter is derived from are SwapTotal and SwapFree (SwapUsed =

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

12/78

PfiT - The User’s Guide

SwapTotal - SwapFree; see p. 18) and the swap high water mark computes as
follows:

hwm_SwapUsednodei
= max

t∈T
SwapUsednodei

. (2.4)

• Mean swap value (in GiB): The mean value of the used swap memory of one single
node over all measurement points t ∈ T = {t0, t1, ..., tn} (in the node view) and
additionally over all nodes of the job and over all of the jobs measurement points
(in the summary view). Both values can differ significantly because an application
can use a very high value over a short period (peak swap usage) and then falls back
into low usage (see swap used). In the example no swap was used (0.0/2.0 GiB).

IO (work, NFS, scratch)

IO utilization (I) (mean values)
+---------+----------+----------+----------+----------+
	/work			
	read	write		
node	data	ops	data	ops
	MiB/s	1000/ s	MiB/s	1000/ s
+---------+----------+----------+----------+----------+				
node323	0.03	0.00	0.47	0.00
+---------+----------+----------+----------+----------+				
1	0.03	0.00	0.47	0.00
+---------+----------+----------+----------+----------+

IO utilization (II) (mean values)
+---------+----------+----------+----------+----------+
	/NFS	/ scratch		
	read	write	read	write
node	data	data	data	data
	MiB/s	MiB/s	MiB/s	MiB/s
+---------+----------+----------+----------+----------+				
node323	0.00	0.09	0.00	0.00
+---------+----------+----------+----------+----------+				
1	0.00	0.09	0.00	0.00
+---------+----------+----------+----------+----------+

Listing 2.3: IO utilization

• read/write data (in MiB/s): In all three cases these metrics are reporting the
bandwidth of the job per node and per second for the read or write operations. In
the case of IO to or from the worksystem, the data will be handled over by for
example BeeGFS or Lustre (over Infiniband), in the case of home via NFS and
scratch is localdata (hard disk or SSD of the node the job runs on). The NFS value
have to be treated with care, since for example the loading of the programs can
also be accounted to NFS. This can lead to a high NFS read rate for short jobs,
although no read operations are performed on home. In the example job there was
just low IO traffic for all three topics.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

13/78

PfiT - The User’s Guide

• read/write operations (in 1000/s) (in this example case just for work / BeeGFS):
These metrics document the number of operations the system needed to perform
reading or writing the data and in this example no operations are reported.

Network utilization (Infiniband)

Network utilization (mean values)
+---------+----------+----------+----------+----------+
	Infiniband			
	received	sent		
node	data	ops	data	ops
	MiB/s	1000/ s	MiB/s	1000/ s
+---------+----------+----------+----------+----------+				
node323	0.06	0.09	0.48	0.14
+---------+----------+----------+----------+----------+

Listing 2.4: Network utilization (Infiniband)

• read/write data (in MiB/s): These two metrics provide the bandwidth of the
communication of the job over the network in the read and write case (mean
values of every single node over all measurement time steps of the whole job period;
currently infiniband only).

• read/write operations (in ops/s): The number of read and write operations denote
the amount of operations to perform the network traffic (data and other adminis-
tration data) (mean values per every single node over the whole job period).

GPU utilization

Per GPU utilization (mean values)
+---------+----------+--------------+-----------------+
| | GPU | GPU usage | GPU memory used |
| node | no. | (in %) | GiB |
+---------+----------+--------------+-----------------+
| node323 | 0 | 72.17 | 0.24 |
| | 1 | 64.58 | 0.21 |
+---------+----------+--------------+-----------------+
| 1 | 2 | 136.75 | 0.44 |
+---------+----------+--------------+-----------------+

Listing 2.5: GPU utilization

• GPU No.: The local GPU number (from 0 to #GPUs-1 on the local graphics card).
In this example two GPUs per node can be found.

• GPU usage: Denotes the GPU mean usage of one GPU over all measurement steps
of the job.

• GPU memory used: Denotes the mean GPU memory usage of one GPU over all
measurement steps of the job.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

14/78

PfiT - The User’s Guide

Job summary

The example job summary is presented below:
Job summary

Elapsed wall - clock time 100.1 % (00 -11:59:25 of requested walltime)
Mean CPU usage 100.0 % (16.0 of 16.0 cores)

Mean Hyperthread usage 98.4 % (15.7 of 16.0 hyperthreads)
Max. main memory used 3.3 % (2.1 of 62.8 GiB available memory)
Max. swap memory used 0.0 % (0.0 of 1.9 GiB available swap)

Mean GPU usage 68.4 %
Max GPU memory usage 2.1 % (0.2 of 11.2 GiB available memory)

Listing 2.6: Job summary

• Elapsed wall-clock time (in percent): The elapsed wall-clock time of the job in
percent of the total requested wall-clock time and in the format dd-hh:mm:ss (days-
hours:minutes:seconds). In the example case the job has a runtime of 11 hours, 59
minutes and 26 seconds (100.1 % of the total requested walltime), in which the 26
seconds overhead is not program runtime but just batch system clean up, etc.

• Mean CPU usage (in percent): The average CPU usage of the job (summed over
all job nodes and job time steps) in percent of the job runtime.

• Mean Hyperthread usage (in percent): All values larger than 100 % of the mean
CPU usage are interpreted as hyperthread usage.

• Max. main memory used (in percent of the available main memory): The memory
high water mark over all nodes and over all measurement steps:

hwm_mem_job = max
i
{hwmi} (i ∈ {node0, ...noden}). (2.5)

• Max. swap memory used (in percent of the available swap space): The maximum
used swap memory over all nodes and over all measurement time steps of the job.

hwm_SwapUsed_job = max
i
{hwm_SwapUsedi}

)
(i ∈ {node0, ...noden}).

(2.6)

• Mean GPU usage (in percent): The average GPU utilization of the job (summed
over all job nodes and job time steps) in percent of the job runtime.

• Max GPU memory usage (in percent): The maximum GPU usage of the job
(average over the sum of all job nodes and job time steps).

Recommendations

To achieve a better job performance of the user’s job, in the text report recommendations
are automatically formulated on the basis of the selected metrics and their metric values.
These recommendations and their criteria are discussed in subsection 2.3.1.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

15/78

PfiT - The User’s Guide

2.1.2 PDF report

The PDF reports task is to expand the output of the ASCII report in a graphical manner,
for example, using bar charts and time series plots. Especially the time series plots yield
further temporal insight into the job behaviour and extend the output of the text report
with the time dimension. Thus, the user is able to see the chronological sequence of the
behaviour of the job (per node).

The first part contains information concerning the job execution in the section labeled
"Job Overview" and about the hardware allocated for the job in the section labeled "Node
Information". The section "Job Overview" lists the unique job identification number, the
user’s name, the name of the queue of the scheduler, the number of allocated nodes and
requested number of cores and time information (duration requested, duration used, start
time, completion time). The hardware information includes the CPU model, amount of
total memory, number of sockets, number of CPU cores per socket, number of threads
per core and a node name listing.
Also included in the first part of the report is a bar chart diagram called the "Global
Summary of Resource Usage". On the left side, the name of the parameter of interest is
listed. On the right side the actual values and units are printed. Each bar in the diagram
compares two values. The walltime compares the requested time to the used time; the
CPU usage compares the average CPU usage to a maximum value; the memory sum
compares sum of maximum memory used during execution to the total allocated sum;
swap sum shows only the maximum swap value. Further values are optional, meaning
they appear only if the data are available. For example, the network traffic is compared
(receiving and transmitting) and the I/O is compared (read and write).
At the bottom of the first page of the report, the recommendations from the recommen-
dation system are listed.

The second part of the PDF report contains information about the node distribution of
several metrics. The grafical representation of this information helps give a quick view
of these distributions. The values to be displayed can be defined in the configuration
file, along with the units of the recorded measurements in the json file and titles for the
diagrams; see the next sections of this document. The units are then converted into
human readable values by the generator and shown in the diagrams. In the present
version, conversions are provided for the following units:
Note that any key word not listed here will not be converted in any way.

The third part of the report contains the time series plots per node of all metrics which
are included in the job’s corresponding json file. The units of the metrics and the names
of the plots can be defined in the configuration file, see section next sections of this
document. The node names and color code are listed at the bottom of each page of plots.
The last part contains a so-called "key", where the user finds definitions of the parameters
which appear in the report.

If GPU’s are available on the allocated nodes, additional information is included on the
global summary on the first page and on additional pages of the pdf report following the
standard report. These additional pages include box plots of the statistical distributions

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

16/78

PfiT - The User’s Guide

on the GPU’s as well as time series plots for each GPU. The last page contains a further
"key" describing all GPU related parameters included in the report.

As input, the PDF report generator receives only a single json file for each job.
An example using current version of the PDF report generator appears in Appendix A.

2.2 Sources of metrics
To present metric values in the various reports to the user and to formulate recommenda-
tions to achieve a better utilization of the cluster resources, raw metric values of the used
cluster resources have to be collected from several sources. These sources were already
presented in this section, whereas the relation to the metrics in the reports will be pre-
sented in section 2.1. The documentation of this relationship is necessary because some
metrics of the reports are the result of the concatenation of the raw operating system
metrics (for example by summation). A major source of the raw system metrics is the
procfs pseudo-filesystem, while the counter values for network (currently only Infiniband),
IO (work (currently only via BeeGFS)) and GPU are collected by the appropriate tools
of the resources like beegfs-ctl (BeeGFS), perfquery (infiniband) and nvidia-smi (Nvidia
GPU). In the following the sources of the raw system metrics will be presented and for
every system metric its meaning, unit and their value interval.

The metric collector Telegraf collects via its plugins almost all metrics of the following
sources, while PfiTCollect only collects those metrics, which are important for creating
the reports (to save database storage).

procfs

procfs (process filesystem) is a pseudo (virtual) filesystem, since all information in the
corresponding files will be generated by the kernel on demand. In general it is mounted
in /proc. We have to distinguish between system and process data. System data is stored
in files in /proc (for example /proc/cpuinfo) while process information can be found in
/proc/pid (for example /proc/1234/stat, in which pid=1234 is the process number). We
will start the respective description of the procfs filesystem with the system information
files listed below. Notice: A reasonable collection rate is every 30 seconds, which has
only a very slight impact on the runtime behaviour; see deliverable 2.2, Part I.

• /proc/cpuinfo contains almost only static information about the CPU cores or
hardware threads, such as, CPU family, CPU model and model name, stepping,
recent frequency of every core or hardware thread (dynamic feature), L3 cache size,
number of cores or hardware threads, instruction set architecture, cache alignment,
address size and power management. This information can be used to summarize
processor properties, as has been done in the reports. The collected metrics are L3
cache size and cpu cores.

• /proc/meminfo holds static and dynamic information about the memory resources
(i.e. main and virtual memory, swap space) and the for out purposes most important

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

17/78

PfiT - The User’s Guide

metrics are presented here. All values are given in KBytes.:

– total usable (physical) main memory of the node minus a few reserved bits
and the amount of the kernel binary (metric MemTotal),

– the whole free (unused) main memory (MemFree); this denotes the amount
of the main memory, which is not used at the moment by the application or
the operating system,

– active and inactive memory (Active, Inactive),
– buffered and cached memory (temporary buffers for files of the file system;
Buffered, Cached),

– memory size of the page tables (PageTables),
– pages used by the kernel stack (KernelStack),
– memory which is used by FUSE by temporarily write back buffers (Filesystem

in Userspace) (WritebackTmp),
– total and free amount of the swap space (SwapTotal, SwapFree),
– total and used amount of the vmalloc memory (VmallocTotal, VmallocUsed).

Most of these metrics are not directly available in the reports, but they are used
to calculate the approximately used main memory and the swap space since both
metrics have to be calculated and are not directly available. The metric MemUsed
is calculated by summing up those parts of the memory, which are allocated by the
operating system and not by the program and not by MemFree). After subtraction
from MemTotal, MemUsed is calculated with the formula below.

MemUsed = MemTotal − (MemFree + Buffered + Cached + Slab

+ SwapCached + WritebackTmp + KernelStack

+ PageTables). (2.7)

SwapUsed is calculated in the following way:

SwapUsed = SwapTotal − SwapFree. (2.8)

An interesting observation was made while running PfiTCollect, since the free swap
space diminished und swap was used, although main memory usage was low. The
swap activity was caused by kernel swapping (swapping out of kernel structures).

• /proc/stat creates a CPU and system statistic. For every core and hardware thread
of the node we get information (for example user, system, idle, iowait, nice (line
cpu(n))) which is also summed to deliver node wide information (line cpu):

– Collecting the number of clock ticks (in USER_Hz, which is on most systems
1/100 of a second) of every CPU core or hardware thread, when the CPU is
for example in user, system, iowait or idle state (the metrics user, nice, system,
idle, iowait, irq, softirq can be found in columns 2 until 8 of /proc/stat) (valid
for line cpu and cpu(n)). Furthermore, the metric values of virtual machines
are listed in this file (time which is used for virtual machines; for example steal,
guest, guest_nice; column 9 until 11). The tick values have to be converted
into seconds in the metric collector.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

18/78

PfiT - The User’s Guide

– number of context switches (ctxt),
– number of processes that are in the runnable state (procs_running),
– number of processes that are blocked and are waiting for completing IO
(procs_blocked).

The metrics, which are used currently in the text and PDF report are CPU usage
= user + system, CPU idle = idle and CPU iowait = iowait. ??? Das scheint mir
nicht ganz stimmig zu sein; wir bekommen CPU usage als Verhältnis in Prozent,
während die anderen Werte CPU time (user, system, idle und iowait) in Sekunden
ankommen. Wir bekommen alle 5 Werte vom Monitor bzw. Telegraf. Vielleicht ist
es im PfitCollect anders...bitte prüfen und Rückmeldung.

• The first three values of the file /proc/loadavg denote the workload of the node
in the last one, five and fifteen minutes. More precisely, they specify the average
number of processes, which are in the runnable state or waiting for IO in the last
one, five or fifteen minutes.

• /proc/uptime contains the uptime of the system since the last reboot (first value)
and the idle time of the system (second value; both in seconds)

• /proc/diskstats (local data) The metric data about the local filesystem (scratch)
are stored in this file. The following metrics will be collected (per disk and disk
partition; accumulated since reboot (except number of I/Os currently in progress):

– number of reads completed denotes the total number of completed reads,
– number of reads merged: If two blocks should be read and are adjacent to each

other, these two blocks are read in one task and number of reads completed
will be incremented by one (not two, although two blocks should be read!).
number of reads merged shows how often this action was carried out.

– number of sectors read specifies the successful read of sectors since reboot.
– number of milliseconds spent reading stores the accumulated value of milli-

seconds staying in read operations since reboot,
– number of writes completed (analogous to number of reads completed),
– number of writes merged (analogous to number of reads merged),
– number of sectors written (analogous to number of sectors read),
– number of milliseconds spent writing (analogous to number of milliseconds
spent reading),

– number of I/Os currently in progress goes to zero, when IO operations termi-
nate,

– number of milliseconds spent doing I/Os increases with the value of number
of I/Os currently in progress,

– The weighted number of milliseconds spent doing I/Os field is incremented
at each I/O start, I/O completion, I/O merge, or read of these stats by the
number of I/Os in progress (field 9) times the number of milliseconds spent
doing I/O since the last update of this field. This can provide an easy measure
of both I/O completion time and the backlog that may be accumulating.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

19/78

PfiT - The User’s Guide

These metrics are collected, but there are additional metrics which can be found
at https://www.kernel.org/doc/Documentation/iostats.txt.

• /proc/net/rpc/nfs presents NFS traffic metric values. This file contains several
lines, but only the one with the beginning proc3 string is of interest for our needs.
proc3 means that in this line the NFS client statistics of NFS protocol version 3
are present. The only values of the proc3 line, which are interesting in our case are
reading and writing over NFS. These values are located in column 9 and 10 of the
appropriate line and are measured in MiB since reboot. To collect data from this
file, an NFS driver and filesystem have to be installed. Further information and
metrics about this pseudo file can be found in https://www.svennd.be/nfsd-stats-
explained-procnetrpcnfsd/.

• The /proc/pid/stat file contains status information of the process PID, which
information are used for example by the command ps. The following parameters
(which are a selection of all parameters) are stored in this file and read by the
collectors:

– PID (process identifier) and PPID (parent process identifier) of the process,
– process state (state),
– number of minor and major page faults since process start (minflt, cminflt,
majflt, cmajflt),

– user, system and nice time (measured in clock ticks; utime, stime, nice),
– number of threads spawned in this process (num_threads),
– start time of the process after booting the system (starttime),
– size of the virtual memory of the process in Bytes (vsize),
– resident set size in pages (rss; this is just the number of pages which result

from text, data, or stack space. This does not include pages which have not
been demand-loaded in, or which are swapped out),

– processor ID on which the process with PID was located during the last time
slice.

– time for guest process on a virtual machine (guest_time).

PID and processname are used as tag keys, the other metrics are field keys in
Telegraf.

• /proc/pid/statm delivers information about the memory usage (in pages):

– size of the whole process virtual memory size (the same as VmSize in /proc/pid/-
status),

– resident set size (the same as VmRss in /proc/pid/status; in KBytes),
– amount of pages the code area as well as the data and stack area of the

program uses (text, data).

• /proc/pid/status provides much of the information of the files /proc/pid/stat and
/proc/pid/statm. The advantage of the representation of the contents in this file is
a better readability of the data for users. The following metric data were used:

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

20/78

https://www.kernel.org/doc/Documentation/iostats.txt
https://www.svennd.be/nfsd-stats-explained-procnetrpcnfsd/
https://www.svennd.be/nfsd-stats-explained-procnetrpcnfsd/

PfiT - The User’s Guide

– name of the process or program name,
– PID, PPID,
– state of the process (i.e. running, sleeping, uninterruptible sleep, zombie,

traced or stopped),
– peak of the process virtual memory size (VmPeak; in KBytes),
– size of the virtual memory of the process (VmSize; in KBytes),
– high water mark, i.e. the peak RAM utilization the process used until now
(VmHWM; in KBytes),

– resident set size (VmRSS; in KBytes),
– amount of memory of the data, stack and code area of the process (VmData,
VmStk, VmExe; in KBytes),

– total amount of used swap space (VmSwap; in KBytes),
– number of threads of the process PID,
– voluntary and involuntary context switches.

IO (work)

To get the metrics of NFS and scratch traffic, we used the metrics of the files
/proc/net/rpc/nfs and /proc/diskstats, see above. The data for the work filesystem
has to determined by a tool, like the beegfs-ctl (clientstats) tool, which measures
the counter values of data and packet transmission by BeeGFS with no impact
on the runtime behaviour. This concrete example is extendable, for instance, to
Lustre.

Network

The network metrics can be divided into infiniband and ethernet metrics. We will
discuss the infiniband metrics first, which are collected by the perfquery tool with
the perfquery -xa command (the ethernet metrics will be implemented in the near
future). The flags -x -a (= -xa) show aggregated extended port counters rather
than (basic) port counters for all ports. The following metrics are collected by
perfquery (collection rate as above) and directly used in the report:

– PortRcvData and PortXmitData show the amount of data (in Bytes) received
and sent by the port(s) (since reboot),

– PortXmitPkts, PortRcvPkts stores the amount of packets (in counts) received
and sent by the port(s) (since reboot).

A few examples follow, which should illustrate the use of perfquery; they have been
extracted from the manpage of perfquery.

– perfquery (reads local port performance counters),
– perfquery -x 32 1 (reads extended performance counters from lid 32, port 1),
– perfquery -a 32 (read performance counters from lid 32 and all ports),

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

21/78

PfiT - The User’s Guide

– perfquery -x -r 32 1 (reads extended performance counters and resets them;
we don’t need to reset the counters).

Remark: It must be mentioned, that the performance counters PortXmitData and
PortRcvData have to be multiplied with four, since in perfquery the octets are
divided by four.

These counters can also be found in the sysfs directory (for every file a counter)

– /sys/class/infiniband/mlx4_0/ports/1/counters/port_xmit_data
– /sys/class/infiniband/mlx4_0/ports/1/counters/port_rcv_data
– /sys/class/infiniband/mlx4_0/ports/1/counters/port_xmit_packets
– /sys/class/infiniband/mlx4_0/ports/1/counters/port_rcv_packets

Counting took place since booting, too.

GPU (Nvidia)

GPU metrics of Nvidia cards can be retrieved with the nvidia-smi tool. The
following request provides the metrics important for our purposes (collection rate
as above; no impact on the runtime behaviour due to the call of nvidia-smi here,
too) :

nvidia -smi --format=csv ,noheader ,nounits
--query -gpu=index ,gpu_name ,memory.total ,

memory.used ,memory.free ,utilization.gpu ,
utilization.memory

The metrics are delivered in a csv format and have no units (see flag –format).
This way of representing simplifies the parsing of the metric values. Those metrics
have the following meaning:

– index: Denotes the local number of the GPU,
– gpu_name: The official product name of the GPU (for example Tesla K40),
– memory.total: Total memory of one GPU,
– memory.used: Total used memory of one GPU (in MiB),
– memory.free: Total free memory of one GPU (in MiB),
– utilization.gpu: Percent of time over the past sample period during one or

more kernels were executed on the GPU,
– utilization.memory: Percent of used memory over the past sample period.

We limit ourselves to Nvidia GPUs since the survey (see deliverable 1.2) showed, that no
cards from other manufacturers are used. Further metrics can be gathered with nvidia-smi
(see e.g. https://www.microway.com/hpc-tech-tips/nvidia-smi_control-your-gpus/).

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

22/78

https://www.microway.com/hpc-tech-tips/nvidia-smi_control-your-gpus/

PfiT - The User’s Guide

2.3 Best practices for users

This section introduces hints and recommendations for users to gain a better job perfor-
mance. It is devided into two main paragraphs. The description of the recommendations
and when they will be thrown can be found in subsection 2.3.1. In the second paragraph
checklists will be presented, which formulate advices regarding the development/compil-
ing process and the preparation of the job run. The recommendation list as well as the
checklists are in an inital state and will be extended permanently.

2.3.1 Best practices

Based on the subjects covered in the metrics documentation the user will be guided
through steps to improve job performance. This list will be extended and refined until
the end of the project.

Since in the text report as well as in the PDF report recommendations are formulated,
those recommendations will be explained here and the conditions, when they will be
thrown. The structure for every best practices topic is as follows:

• Header with a short problemdescription (Problem),

• condition, when this error occurs (Condition),

• description and explanation of the error (Description),

• hints to solve or to reduce the effect of this performance problem (Recommenda-
tion).

The explanation starts with the text report. Important: Do not only read the re-
commendations, please check the appropriate metrics and their values to check if the
recommendations are reasonable and to learn about the job and system behaviour.

The following problems can be discovered with this text report:

• Low mean CPU usage and high mean CPU idle and CPU iowait time (per node
and per job),

• memory high water mark and mean memory (per node and per job),

• swapping/Paging issues (per node and per job),

• low GPU and GPU main memory utilization (per node and per job),

• high mean IO and network bandwidth usage (per node),

• problematic time limits of the job (to small requested or elapsed job wall-clock
time),

• load imbalance.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

23/78

PfiT - The User’s Guide

Problem: Mean CPU usage below 50%

• Condition: Mean node CPU usage < 0.5 and mean job CPU usage < 0.5.

• Description: Mean node CPU usage denotes the mean usage of all cores/hyper
threads of the node, in which they are in the user or in the system state (see
description of this derived metric in ??). That means, they are not waiting and
they are doing something useful. If this average value for a node or for the job
decreases below 50 %, the cpus on one node or of the job were waiting over the
half of the job runtime (e.g. for IO).

• Recommendation: To gain a better runtime performance, it is crucial to increase
this value by decreasing the idle time or IO waiting time. In many cases the CPU
usage correlates with the IO or network traffic rate, i.e. in the course of doing IO
the CPU usage reduces, while the IO rate is increasing. To verify this topic, please
consult the (sub)tables CPU and IO in the text report and especially the combined
CPU-IO diagram in the PDF report of the job. If in the latter an increasing IO
rate and a decreasing CPU usage can be noticed this correlation give a hint towards
this problem. The analoguous situation can be seen and visualized for the network
traffic rate and the CPU usage.

Problem: Mean CPU idle > 50%

• Condition: Mean node CPU idle > 0.5 and mean job CPU idle > 0.5.

• Description: Mean CPU idle denotes the mean idle usage of the CPU, in which the
CPU is in the idle state (see description of this derived metric in ??) That means,
the CPU is waiting and is not doing something useful. If this average value for a
node or for the job increases above 50%, the cpus on one node or of the job were
waiting in the average over the half of the job runtime.

• Recommendation: Reduce the waiting time of the processes. In many cases the
CPU usage correlates with the IO or network traffic rate, i.e. in the course of doing
IO the CPU usage reduces (and CPU idle increases), while the IO rate is increasing.
To verify this topic, please consult the (sub)tables CPU and IO in the text report
and especially the combined CPU-IO diagram in the PDF report of the job. If
in the latter an increasing IO rate and a increasing CPU usage can be noticed,
possibly this problem arose. The analogue situation can be seen and visualized for
the network traffic rate and CPU idle.

Problem: Mean CPU iowait > 10 %

• Condition: Mean node CPU iowait > 0.1 and mean job CPU iowait > 0.1.

• Description: This metric indicates the mean IO waiting time of the CPUs of the
node or of the job (see description of this derived metric in ??).

• Recommendation: Reduce the waiting time for IO. Sometimes the CPU iowait
correlates with the IO rate, i.e. in the course of doing IO the CPU iowait metric
value increases, while the IO rate is increasing, too. To verify this topic, please

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

24/78

PfiT - The User’s Guide

consult the (sub)tables CPU and IO in the text report and especially the combined
CPU-IO diagram in the PDF report of the job. If in the latter an increasing IO
rate together with an increasing CPU iowait can be noticed, this correlation can
be a hint for IO problems.

Problem: Maximum job memory utilization (Memory High Water Mark) below main
memory of other queue

• Condition: mem_hwm < mem_hwm_other_queue

• Description: If the memory high water mark of the job is below the available
memory of another queue it is recommended to run the job in another queue with
fewer memory.

• Recommendation: Use queue with fewer available main memory.

Problem: Maximum job memory utilization (Memory High Water Mark) is larger
than 95% of main memory

• Condition: mem_hwm > 0.90.

• Description: If the memory high water mark is larger than 90% of the main memory,
it is possible, that the job will begin to page/swap or that the OOM killer will kill
the process of the job with this high value and as the consequence the job will be
aborted.

• Recommendation: Try to reduce the memory workload of the program to reduce
memory usage and to prevent paging/swapping. For example do not allocate
memory for all arrays simultaneously but rather when they are needed. Another
possible source of paging/swapping is, if there is a memory leak (see time series in
PDF report). It is also recommended to get an evenly time distributed memory
workload in contrast to strongly time varying memory usage.

Problem: Swapping (mean swapping)

• Condition: mean_swap > 0.0

• Description: A value of mean_swap larger than 0.0 KiB could lead to severe
paging/swapping, what means, that parts of a process memory will be written to
disk. But this leads to performance problems, since writing and reading of those
parts of the memory are very time consuming, because disks or disk/network are
much slower than memory and memory busses. It have to be mentioned that this
value shows the mean value of paging/swapping. As the consequence it is possible,
that this value is relatively constant over the course of the job, which implies a
relativly constant paging/swapping activity. Another possibility is, that only a few
paging/swapping bursts cause this values. Please consult the column swap/hwm
to get more insight inot this problem.

• Recommendation: Try to reduce the memory workload of the program to reduce
memory usage and to prevent paging/swapping. For example do not allocate

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

25/78

PfiT - The User’s Guide

memory for all arrays simultaneously but rather when they are needed. Another
possible source of paging/swapping is, if there is a memory leak (see time series in
PDF report). It is also recommended to get an evenly time distributed memory
workload in contrast to strongly time varying memory usage.

Problem: Elapsed wall clock time of the job is below of 25 % of the requested
wall-clock time of the job

• Condition: elapsed_wall-clock time < 0.25 · requested_wall-clock time

• Description: The total runtime of the job (elapsed wall-clock time) took only 25 %
of the user’s requested job wall-clock time.

• Recommendation: If this job was not a test job or the job run was interrupted by
a program error, we would advice you to adjust (to lower) the requested wall-clock
runtime of the job. It is also possible, that no requested wall-clock time was given.
In Slurm the maximum wall-clock time of the selected queue will be taken as the
requested wall-clock time which leads eventually to longer queue waiting times.

Problem: Elapsed wall-clock time greater than 100 %

• Condition: elapsed_wall-clock time >= requested_wall-clock time

• Description: The total job runtime was greater than the requested wall-clock time.
That could possibly lead to a problem if not all computations could be performed
and data is lost.

• Recommendation: Please adjust the runtime if possible. If the used queue does not
allow a higher runtime, change the queue if possible or ask your system administrator
for more job runtime. A further method to circumvent this problem is to devide
the whole problem into chunks of maximum wall-clock time which are independent
of another or which allow to restart the job using the old data of the last run.

Problem: No GPUs were used

• Condition: n_gpus = 0.

• Description: The job was scheduled to a GPU queue, but no GPU was used.

• Recommendation: If no GPU will be used while job runtime, please use a different
queue. This recommendation is obsolete if using GPU queues is allowed explicitly
for non GPU jobs.

Problem: Not all GPUs were used

• Condition: 0 < n_gpus < max_n_gpus.

• Description: The job was scheduled to a GPU queue and used at least one GPU
but not all GPUs.

• Recommendation: If possible use all GPUs of every node.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

26/78

PfiT - The User’s Guide

2.3.2 General recommendations and checklists

Development process

At the beginning some notes, warnings and hints. The most important things in writing
programs are1

• that the program does that, what you want,

• that the programm is error free,

• that there are no security issues in the program,

• that the code is readable and commented,

• that the code is portable (often useful/needed),

• that the program is easily extendable.

Especially the first three items are very important and it is strongly recommended to
write at the first stage a properly running program which is error free and has no security
issues (in scientific computing this is a minor problem). After managing the first three
steps successfully doing performance tuning can be done. But partly these goals can be
solved in parallel. When designing the program the datastrucures and algorithms can
be chosen in such a way that inherent optimization can be done (use good designed and
efficient algorithms and data structures). Programming development for optimization
needs not only to consider the algorithms but also efficient data strucures, too. It is
important to mention, that sometimes optimization and portability are not compatible
with each other every time.

Performance tuning takes place on three levels ([5]):

• system level,

• application level and

• microarchitecture level.

On the system level the program performance can be diminished by old drivers (for
example network, GPU), old linux kernels, a wrong configured BIOS (NUMA), etc. This
is the level of the systemadministrator and we expect, that the system is well configurated.
The application level (and partly the microarchitecture level) is the most interesting level
for developers. On this level a speed up of two or three magnitudes can be managed by
using

• effective mechanisms to overcome the memory wall,

• vectorization (with an ideal speed up-factor of 4 (double values, AVX/AVX2)),

• shared memory parallelism (with an ideal speed up-factor of the number of threads
using OpenMP),

1http://www.wilkening-online.de/programmieren/c++-performance-optimierungen.html

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

27/78

http://www.wilkening-online.de/programmieren/c++-performance-optimierungen.html

PfiT - The User’s Guide

• distributed memory parallelism (with an ideal speed up factor of the number of
launched MPI processes).

A speed up of one magnitude can be reached with tuning the microarchitecture level
(effective pipelining, etc.).

In the following we will only present possible ways to optimize programs on the ap-
plication level in a keyword character. In special cases we will link to appropriate
documents, where the cases are explained in detail. At this place it is recommended to
advise the two books [2] and [3], which are a valuable source of hints for performance
engineering and parallelization.

• Use (higly optimized (parallel)) libraries for your tasks. Do not write your own code
when you want for example to search, to sort and do matrix and vector operations.
Do not reinvent the wheel! The elements of the libraries are in general highly
optimized and comprehensively tested! The following list contains some libraries
for numerical and statistical computing:

– GNU Scientific Library (GSL) is a C/C++ library for numerical and statistical
computing, which also includes sorting and searching2.

– Boost-C++ libraries: A collection of C++ libraries3,
– BLAS 1,2,3 (Basic Linear Algebra Subroutines) or OpenBLAS; (open) libraries

for vector and matrix computations4,
– Math Kernel Library (MKL): A highly optimized math and numerical library
(Linear Algebra, FFT, PDEs, Deep Neural Network, etc.) for Intel CPUs by
Intel (free download 5).

• Use efficient datastructures and algorithms (O(n · log(n)) is better than O(n2)!).
Selecting efficient algorithms and data structures is more important than optimizing
a less efficient algorithm.

• Optimize only those parts of the code, which requires significant runtime or which
are bottlenecks of the program. These parts of the program can often be detected
with performance analysis tools. Some of them will be presented in the following:

– Static code analysis: Static code analysis is performed while compile time. It
checks the source code to find specified problems or errors. Many of those
things can be detected by the compiler but static code analysis tools are
doing further checks (for example guaranteeing coding standards, searching
for possible memory leaks, buffer overflows). Some examples for static code
analyzers are Cppcheck, Splint/Lint (C/C++), Pylint, PyChecker (Python).

– Valgrind, which includes for example a memory checker to detect memory
leaks (dynamical code analysis) or further profiling tools (see 6).

2https://www.gnu.org/software/gsl/
3https://www.boost.org/
4https://www.openblas.net/
5https://software.intel.com/en-us/mkl/choose-download/linux
6http://www.valgrind.org/

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

28/78

https://www.gnu.org/software/gsl/
https://www.boost.org/
https://www.openblas.net/
https://software.intel.com/en-us/mkl/choose-download/linux
http://www.valgrind.org/

PfiT - The User’s Guide

– LIKWID is a toolsuite to do performance analysis through profiling, for ex-
ample likwid-perfctr (reads hardware performance counters) or likwid-mpirun
(wrapper to start parallel applications).7

– Intel VTune Amplifier is a commercial profiling tool by Intel with a graphi-
cal front end. Intel VTune Amplifier supports Software and hardware event
sampling, memory debugging and profiling, thread profiling, etc.8

– gprof is a free performance analysis tool (profiling), too, and the output is a
flat profile (which contains the total execution time of every called function)
and a call graph of the functions (with its residence time for every function
(call)). A more detailed description can be found in [3], chapter 2.2.3.2 until
2.2.3.4.

There are other performance analysis tools which are listed in9.

• Try to use to work in the cache as much as possible (space and time dependency)!
In [2], chapters 1.6 and 1.7, this important topic will be presented in detail.

• Try to parallelize the code on the level of instruction using CPU instrinsics (SSE/
AVX).

• Try to parallelize the program by exploiting data parallelization. Therefor try to
partition the problem in independent parts. After that analyze if it is favourable
to use a shared or non shared memory approach or a hybrid approach (shared
and non shared paradigm together). In the shared memory case parallelization
will be done with the multithreading library OpenMP (or sometimes Pthreads).
In the non shared case MPI in general will be used and in the hybrid approach
both approaches (MPI with OpenMP). Additionally parallelization with the use
of accelerators can be used.

• Try to parallelize the code by using (summary of the above two points)

– Instruction level parallelism (CPU instrinsics (SSE/ AVX)),
– Shared memory parallelism (OpenMP, Pthreads),
– Distributed memory parallelism (MPI),
– accelerators/offloading (OpenACC, Cuda, OpenCL).

We will give for every kind of parallelization an introductionary example in the
subsections starting from subsection 2.3.3.

• Reduce IO since disks are much slower than CPU and memory and IO is very time
consuming.

• Reduce MPI and communication actions to other processes, since (MPI) communi-
cation is often very time consuming.

7https://github.com/RRZE-HPC/likwid
8https://software.intel.com/en-us/vtune
9https://en.wikipedia.org/wiki/List_of_performance_analysis_tools

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

29/78

https://github.com/RRZE-HPC/likwid
https://software.intel.com/en-us/vtune
https://en.wikipedia.org/wiki/List_of_performance_analysis_tools

PfiT - The User’s Guide

• Since in HPC large loops over vectors or matrices take a considerable amount of
time, we will have a closer look at potential bottlenecks in (large) loops:

– Strength Reduction: Try to avoid expensive operations and replace them with
an equivalent expression or operation which does not need as much cycles as
the target expression (because the target expression/operations often require
dozens of cycles to perform their computation in comparision to approximate-
ley 3-5 cycles for for example multiplication or addition):

∗ replace pow(x, 2) or x ∗ ∗2 with x · x (please have a look at [3], chapter
2.1.6.4),

∗ floating point and integer division (an often occuring scenario is the divi-
sion of an expression with a constant factor. It is advantageous to multiply
the expression with the inverse of the divisor/denominator),

∗ If one factor of the multiplication or division is a two potency, it is possible
to replace the multiplication or division by a bit shift.

∗ trigonometric and exponential functions (if possible create lookup tables
instead of compute them every time).

– Subexpression eliminiation: If an expression is often used in a loop store this
expression value in a variable and use this variable instead of recalculating
this expression every time. This saves computation time! It is possible that
the compiler will do that for you (dependant of the optimization level) but
it is recommended to do it manually because it is not sure that the compiler
will do it automatically for you, since the compilers go only until a specified
expression length (use scope variables). A more detailed and exemplified
documentation is given in [3], chapter 2.1.6.6.

– Loop-Invariant Code Motion: Try to reduce floating point operations. An
useful example is, that calculations in a loop, which are not dependent of the
loop variable (loop invariant expressions) should be calculated in front of the
loop. This action is probably done by the compiler, but it could be useful to
experiment. For further information see [3], chapter 2.1.6.7.

– If possible try to avoid calling a function in a large loop. Try to write a
function which includes the loop because of the function overhead. Otherwise
try to use function inlining or use macros, if the function only holds a few
lines (inlining in C/C++ with the keyword inline). In function inlining the
function call will be replaced with the function body of the called function
(but the decision to do that is left to the compiler). This saves the overhead of
the function call (for example creation of the parameters on the stack, saving
return address, etc.) and gives the compiler more flexibility in reordering the
code. The text of a macro will be always substituted. Please have a look at
[3], chapter 2.3.2, for further information.

– Dead Code Removal: Try to write code without code, which will not be
executed. Often the compiler will eliminate these code parts, but as said
before, it is advantageous to take care of this aspect while programming and
do not trust on the compiler too much. Furthermore, the compiler will possibly
generate dead code while the optimization step and will eliminate this part
automatically. Please have a look at [3], chapter 2.1.6.3..

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

30/78

PfiT - The User’s Guide

– Try to avoid type casts (please see [3], chapter 2.3.5.1).
– Try to avoid (if or switch/select) conditions in loops (please see [3], chapter

2.3.3 and 2.3.4). If this is not possible, some recommendations:
∗ If several conditions have to be evaluated, put the condition with the
highest probability of occurrence in front of all, then the 2nd probable,
etc.

∗ If there are conditions in the if command with much calculations, then
put that if branch to the end, where the most calculations have to be
done (if the eventuation of all conditions are equally probable).

∗ Use hashtables or arrays in case of if or switch in loops (C/C++; in
Fortran if and select).

∗ Minimize jumps in the code.
– Loop Unrolling: Try to unroll loops, that means for example

for (int i = 0; i<n; ++i)
{

A[i] = B[i] + C[i];

}

Listing 2.7: Loop unrolling (before unrolling)

will become to:

for(int i = 0; i < n; i+=4)
{

A[i] = B[i] * C[i];
A[i + 1] = B[i + 1] * C[i + 1];
A[i + 2] = B[i + 2] * C[i + 2];
A[i + 3] = B[i + 3] * C[i + 3];

}

Listing 2.8: Loop unrolling (after unrolling).

This action often can be executed by the compiler with a special flag (-funroll-
loops fpr the GCC) or while using Interprocedural optimization or Profile
Guided Optimization. But it is often worth trying to do this manually (don’t
trust the compiler too much), because it reduces the loop overhead (e.g. fewer
increments, tests on boundaries and branches/jumps). It often also increases
the amount of computation in the loop). Please see [3], chapter 2.4 for a
deeper discussion on loop unrolling.

– Memory access patterns: Try to arrange your data in memory in that way,
that access time is minimized and data can be accessed for example in a
linear order. This is the fact in array (vectors). 2d arrays (allocated on the
stack) are in memory stored in a linear fashion. When accesssing matrices,
it is important to know, that C/C++ stores matrices rowwise, while Fortran

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

31/78

PfiT - The User’s Guide

stores matrices columnwise. To save memory access time, iterated matrix
access should take place row first in C/C++ and column first in Fortran.
Furthermore in dynamical allocated arrays the rows are in general not stored
in a contigouos way in the memory. Please have a look at [3], chapter 2.4.7,
for a deeper discussion of memory access patterns.

– Optimize the code regarding the workload of memory (the lesser, the better
and when possible equally distributed over time)!

• If possible use float instead of double if floating point calculations are executed
(but only, if the results are precise enough). The goal is for example the reduction
of the workload or a higher computation rate.

• Recursion is nice and elegant but due to performnace reasons it is slow in contrast
to iterative algorithms, which are doing the same thing.

• If possible array and object arguments of a function should be handed over by
reference, not by value since the copying needs much more time than handing over
the address of the object. Variables of basic datatypes can be handed over by value.

• Try to use mainly the stack since creating, adminstrating and deleting the heap
storage is time consuming.

• Avoid NUMA issues!

Compiler and compiling process

In this paragraph we will introduce compiler optimzation flags to gain more program
performance. But be careful: The presented optimization flags can have different
performance effects on different problems and these flags are suggestions, because
their use is very promising and lead in general to a better program performance
regarding our example program (Jacobi iteration with a five point stencil (2.22)).
Furthermore the content of the compiler flags are taken (mostly in own words)
from the manuals of the GCC and Intel compiler.

– Use at least the On flags (n ∈ {0, 1, 2, 3, fast}), which have the following
meaning for the Intel and GCC compilers :

∗ -O0: (Almost) No optimzation enabled. This is the default value for the
GNU compiler when no optimization should be done and it is strongly
recommended to compile with -O0 when debugging or profiling should
be performed (with gdb or gprof). Otherwise, in the case of debugging
the debugger will for example show the error in codelines, where no error
exists because of the optimization procedure (optimized out or permuted
codelines, out of order execution).

∗ -O1: The code will be optimized regarding execution time and code
size. This optimization level optimzes for time but avoids aggressive
optimization steps to keep the size of the object files and the binary

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

32/78

PfiT - The User’s Guide

within a limit or nearly constant (see 10 which flags are enabled for GCC,
when selecting -O1).

∗ -O2: More optimization in comparison to O1 (including all optimization
flags of O1): This is the default optimization flag for Intel conmpilers and
the optimzation regarding the runtime is still more intense than in -O1
(see 11 which flags are enabled for GCC, when selecting -O2).

∗ -O3: Even more optimization (including all optimization flags of O1 and
O2). This is the highest level which regards strict standard compliance.
See 12 which flags are enabled for GCC, when selecting -O3.

∗ -Ofast: Optimizing excessivley for speed and disregards (with some ad-
ditional flags) strict standard compliance (IEEE Floating Point Standard
IEEE 754; see 13).

In numerical computing it is recommended to use optimization flag -O2 or -O3.
But be careful: Sometimes the use of the above optimization flags will lead
to wrong results (especially using -O3 instead of -O2), so it is recommended
to compile and run the job in the development stage with -O0 and then with
-O1 and so on. If in all stages (including -O3) the results are nearly the same
(within a predefined error), -O3 is in many cases the best choice regarding the
program performance. -Ofast can also be used but with much care because
it disregards strict standard compliance. In our small benchmark scenario
the runtime was approximately 10% below the -O3 case and there was no
significant error.

– Use further optimization flags of the appropriate compiler. The following flags
are recommended to test with GCC:

∗ -march=cpu-type: This flag generates assembly code for the given cpu-
type using all features of this CPU. For example -march=haswell gener-
ates code for a machine with haswell CPU and optimizes it towards this
architecture and the instruction set architecture (ISA) of this CPU (or
compatible ones) using all haswell features. Since in this example this
optimization procedure is taylored towards the haswell architecture it is
possible that the code will not run on other architectures than this (or
compatible CPUs) or on older CPUs. An overview of the valid cpu-types
can be found on 14.

∗ -mtune=cpu-type: -mtune generates code which is optimized for the given
ISA but the code will run on other CPUs. The following description in
the GCC manual should explain that: „While picking a specific cpu-type
schedules things appropriately for that particular chip, the compiler does
not generate any code that cannot run on the default machine type unless
you use a -march=cpu-type option. For example, if GCC is configured for
i686-pc-linux-gnu then -mtune=pentium4 generates code that is tuned for

10https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
11https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
12https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
13https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
14https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

33/78

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-\protect \discretionary {\char \hyphenchar \font }{}{}Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html

PfiT - The User’s Guide

Pentium 4 but still runs on i686 machines.“. If march is enabled, mtune
is enabled, too.

∗ -msse, msse2, -mAVX, -mAVX2, etc.: These flags enable the ISA exten-
sions SSE, SSE2, AVX, AVX2, etc. If intrinics are used in the code, the
appropriate flag has to be set. With the flags -mno-sse, mno-avx, etc.
these extensions will be disabled.

∗ -mfma: Enables Fused Multiply-Add, what means, that the compiler can
process exressions like x← x + y · z.

∗ -m64: Generates code for the x86_64 (64 Bit) architecture by setting int
to 32 Bit and the integer type long and pointers to 64 Bit. There are
options -m32, -m16, etc. with analogous functionality.15

∗ -funroll-loops: This flag enables loop unrolling in which the number of
loops have to be known at compile time. This flag is implicitly enabled by
activating the flags fprofile_gen / fprofile_use and fprofile_auto.
Otherwise it has to be explicitely set.

∗ -ftree-vectorize: Auto-vectorization of the code will be enabled. That
means the compiler tries to vectorize parts of the code automatically in
contrast to vectorize the code by hand by the user. This flag is automati-
cally enabled with the -O3 flag (GCC) and -O2/-O3 flag (Intel).

∗ -flto: Applies link time optimization (LTO). These optimizations will
be applied at link time which allows GCC to optimize on a higher level
because the whole program is considered for the optimization process.
This is a kind of interprocedural optimization (IPO) which allows the
elimination of dead code, reordering of the functions for better memory
layout and locality, reducing duplications or inlining appropriate functions
in loops16. In the common optimization techniques the optimization focus
is only on single functions or blocks of codes.

∗ -fwhole-program: If the current compilation unit is the only program
unit that has to compiled, this flag can be applied. „All public functions
and variables with the exception of main and those merged by attribute
externally visible become static functions and in effect are optimized more
aggressively by interprocedural optimizers“.17 It is recommended to use
fwhole-program and flto not together.

∗ -profile_gen und -profile_use: Instruments the code and uses profil-
ing to optimize the code (Profile Guided Optimization (PGO)). Using this
flag generates in the first step a profiling report for the compiler (prof_gen)
in the first step. To process the report data the user has to run the in-
strumented version of the program a few times (to collect performance
data/issues and to train the compiler; second step) and then to recompile
the target file again with the prof_use flag (without -prof_gen). Run-
ning the PGO optimized program resulted in our scenario in significant
speed ups (up to 15 - 20 percent) and is recommended to test.

15https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
16Interprocedural Optimization (Wikipedia)
17https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

34/78

https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://en.wikipedia.org/wiki/Interprocedural_optimization
https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html

PfiT - The User’s Guide

But it should be mentioned again, that the the optimization success of these
flags (or a combination of them) are often problem dependant. Optimization
flags, which significantly speed up a program will eventually not speed up or
even slow down another problem. The O-flags will in most cases optimize the
program significantly, the rest of these flags are (sometimes very) promising
optimization candidates.

In the case of the Intel compiler the following example flags are promising
candidates for significant optimization of the code.

∗ -On (n ∈ {0, 1, 2, 3, fast}) see the GNU compiler above.
∗ -xHost, -xAVX, -xCORE-AVX2: In the case of xHost the compiler gen-
erates code for that ISA which best fits the micro architecture of the
target computer (see march flag for GCC). In the case of -xAVX and
-xCORE-AVX2 the compiler tries to generate code with application of the
given ISA extension (in this case AVX and AVX2). These flags are anal-
ogous to -march=native, -mavx, -mavx2 for the GCC.

∗ -mtune=cpu-type: The code will be optimized towards the selected cpu
type (for example cpu-type=broadwell), but unlike -xHost extended
instruction sets are not used what means, that the code is portable to
other CPUs18.

∗ -Ot: All speed optimizations are enabled. See -Ofast for GCC.
∗ -fast: This flag optimzes the code for speed over the whole program19.
∗ -vec: This flag enables auto-vectorization (see -ftree-vectorize (GCC)).
∗ -parallel: Enables auto-parallelization.
∗ -prof_gen / prof_use: Using this flag generates in a first step a profil-

ing report for the compiler (-prof_gen). To process the report data the
user has to run the instrumented version of the program a few times (to
collect performance data/issues and to train the compiler) and then to re-
compile the target file again with the -prof_use flag (without -prof_gen).
Running the optimized program often yields a significant speed-up up to
15-20 %20.

∗ -ipo (interprocedural optimization): Setting this flag enables the Intel
compiler to optimize across file borders what could lead to significant
performance gain21.

– Try different compiler. In general the Intel compiler is the compiler, which
generates faster code than other compilers, while the GCC is freely available.
It’s worth trying, which of the available compiler does the best job for your
needs. This refers to different compilers as well as to different versions of a
compiler. For example it is advisable to benchmark the program with more

18https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-mtune-tune
19https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-profile-guided-

optimization-pgo-options
20https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-profile-guided-

optimization-pgo-options
21https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-

optimization-ipo-options

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

35/78

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-mtune-tune
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-fast
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-fast
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-profile-guided-optimization-pgo-options
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-profile-guided-optimization-pgo-options
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo-options
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo-options

PfiT - The User’s Guide

than one version of a compiler. In the PECOH project22 it was for example
seen, that especially the Finite Element Sea Ice-Ocean Model FESOM223 were
more performant with the 2018 Intel compiler than with the 2019 one.

– OpenMP: To parallelize a program on the basis of the shared memory
paradigm on multi core with threads, the OpenMP API (Open Multi-Processing)
is very popular (an alternative is PThreads, but OpenMP is more convenient).
To enable OpenMP the user have to include the appropriate header file omp.h
(in C/C++), to include the code with the appropriate pragmas and OpenMP
library functions and to compile the source file with -fopenmp (GCC) and
-openmp (Intel).

– OpenACC: Using the GPGPU OpenACC is the equivalent to OpenMP and
supports a heterogenous paradigm (that means the calculations are done on
the CPU and the GPGPU). For further details please see 2.3.3.

– To get reports about the vectorization and optimization process the Intel
compiler provides the flags -vec-report and -qopt-report which are reporting
the successful and non successful optimization steps.

Job run

– Try to reduce the queuing time of the job by
∗ explicitly defining the requested wall-clock time, since otherwise the de-

fault maximum requested walltime of the queue will be used, which could
lead to an unnecessary waiting time of the job;

∗ explicitly adjusting the requested wall-clock time to the expected or mea-
sured wall-clock time.

– Using the right queue to gain for example enough job memory or GPU re-
sources.

– Configure the batch job with the right parameters (queue parameter, job
specific parameter).

– Use process and/or thread pinning!
– Experiment with the speed-up rate, because a low speed up/bad scalability

should result perhaps in fewer requested nodes.

2.3.3 Using accelerators(OpenACC)
In this subsection we will give an example on how to parallelize a sequential program
by using CPU and GPGPU capabilities. But why using additional compute capabilities
others than the CPU? There are several reasons:

• In recent days an increase of performance was reached by tuning the frequency,
waht means, a doubling of the frequency approximatley doubles the performance.
But free lunch is over because this kind of performance tuning leads from a defined
frequncy to very high power needs and a strong heat creation.

22https://wr.informatik.uni-hamburg.de/research/projects/pecoh/start
23https://fesom.de/models/fesom20/

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

36/78

https://wr.informatik.uni-hamburg.de/research/projects/pecoh/start
https://fesom.de/models/fesom20/

PfiT - The User’s Guide

• The performance of the CPU grows faster, than the bandwidth of the memory bus.
As a consequence the CPU has to wait longer for new data to compute.

• Problemsolving: Sinvce single Core performanceoptimization with the traditional
methods comes to an end, more cores on a die relaxed the problem. But with
this kind of perfrormance tuning parallelization entered the the game and new
programming paradigms has to applied. But since the CPU has its limitations, the
graphic cards with its thousand of trivial streming processors can do much more
work in parallel, than the CPU and is potentially faster. This is the reason to use
the cheap alternative offloading.

This subsection should be just an appetizer and covers very basic aspects of the paral-
lelization using OpenACC which is a parallel programming paradigm for heterogeneous
systems (CPU and GPGPU). It uses compiler pragmas (compiler directives), supporting
functions by the runtime library and environment variables for parallelization. In contrast
to CUDA, which is a low level extension of C/C++ and Fortran, it allows an incremental
insertion of parallelization, which means, that the user can successively select regions of
the serial code and try to parallelize them. These regions are in general loops, i.e. loop
parallelization like in OpenMP will be done and the directive based approach is very
similar to OpenMP. OpenACC was introduced by Cray, CAPS, Nvidia and PGI in 2012
for C/C++ and Fortran. The current version is 2.7 (2018), which is implemented in the
PGI compiler (2.5 in the GNU compiler, version 9.2) .

In the following key aspects of OpenACC will be presented in listing 2.11. This code is
an example implementation of the discretization of the instationary 2D heat conduction
problem (an instationary linear partial differential equation of the order two with non
vanishing right hand side; see the serial examplecode in section ??). This example was
formulated using only linear arrays (vectors) instead of matrices, because of the problem,
that the rows of dynamical allocated matrices are not necessarily neighboured in the
memory which can lead to problems in accessing data. Without the #pragma regions one
gets the serial version of the program. Basically the code is separated in parts which are
calculated by the CPU and those, which are managed by the GPGPU (see Listing 2.11).
If only one loop is executed in the GPGPU paragraph, then the surrounding braces can
be ommited.

1 Sequential code (Code executed on the CPU)
2
3 # pragma acc parallel
4 {
5
6 # pragma acc parallel
7
8 # pragma acc loop
9 for (int i = 0; i < n; ++i)

10 (Code executed on the GPU)
11
12 }
13
14 Sequential code (Code executed on the CPU)

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

37/78

PfiT - The User’s Guide

Listing 2.9: Five point stencil (OpenACC)

Outside the parallel region the code will be executed on the CPU. When creating a
parallel region, the OpenACC compiler will create one or more gangs, which are executed
in parallel und redundantly. A gang can execute for example a part of the for loop (that
means the first gang will execute the first 100 loops, the second one the next 100 loops,
etc.) and all gangs together executes the whole loop.

Now let’s have a look at the example. The fully example can be downloaded from
https://profit-hpc.de/downloads/. Until now (11/2019) only the PGI compiler supports
the latest OpenACC specification (2.7), while the newest GNU compiler 9.2 supports the
OpenACC specification 2.5, while the Intel compiler does not support OpenACC. In the
following we use the PGI compiler 19.7. To compile the example below, the following
line will manage that:

pgc++ -fast -Minfo=accel -ta=tesla:managed

The compilation flags are as follows:

• -fast: Optimizes the code as much as possible

• -Minfo=accel: Gives feedback about the parallelization procedure on the GPGPU
with OpenACC. There are further other flags like opt (informs about code opti-
mzation) or all (feedback about all compilation steps).

• -ta=tesla:managed: Compiles for using the OpenACC code for the tesla archi-
tecture. In the case of -ta=multicore the code will be compiled to run on a
multicore CPU by using threads. On using the additional managed flag instructs
the compiler to build code for the GPGPU and the data movement will be managed
automatically.

The compilation process generates in this case the following output:

1 231 , Generating copyin (q[:N*N])
2 Generating copy(err ,Aold [:N*N])
3 Generating copyin (D,dt ,A[:N*N],dx)
4 237 , Generating copyin (q[:N*N])
5 Generating copy(err)
6 Generating copyin (Aold [:N*N],D,dt ,dx)
7 Accelerator kernel generated
8 Generating Tesla code
9 237 , Generating reduction (max:err)

10 239 , # pragma acc loop gang , vector (128) /* blockIdx .x threadIdx .x */
11 242 , # pragma acc loop seq
12 242 , Loop carried scalar dependence for err at line 250
13 256 , Generating copyout (Aold [:N*N])
14 Generating copyin (A[:N*N])
15 Accelerator kernel generated
16 Generating Tesla code

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

38/78

https://profit-hpc.de/downloads/

PfiT - The User’s Guide

17 259 , # pragma acc loop gang /* blockIdx .x */
18 260 , # pragma acc loop vector (128) /* threadIdx .x */
19 260 , Loop is parallelizable

Listing 2.10: Five point stencil (OpenACC)

The line numbers at the left hand side are showing where the following text refers to.
The most important message is, that the code has no errors and that it is is parallelizable
(line 260 respective line 19). In the lines 1 until 6 and 13 until 14 the data movement
of the compiler for every loop is documented, in the lines 10 and 11, 17 and 18 the
segmentation of the parallel loops is documented.

Now we will have a closer look to the jacobi kernel, which is the only region of the
code, where parallelization was done. In the lines 18 until 49 and 52 until 55 of the
listing two parallel regions are defined, which will executed on the GPGPU. In the first
parallel region (which consists of a combined #pragma acc parallel loop) the update of
the values in every timestep in the nodes of the matrix/region will be done. Additionally
a reduction will be executed, what means, that in every gang the value of the variable
err is calculated (of the appropriate part of the loop) and at the end of the region the
overall maximum will be calculated and stored globally in err (the other err values will
be local to the appropriate gang). This method is called reduction because out of a set
of values one value will be calculated with the help of an operator (reduced to one value).
In our case we use the max operator as the reduction operator. Other operators are:

• +, *

• max, min,

• &, | (bitwise and and or),

• &&, || (logical and and or).

Using the below example of code it can be demonstrated how the code can be iteratively
parallelized. In the first step identify all regions, which are parallizable, then, in the
first parallelization step, parallize the lines 18 until 49, compile the code and check,
if there are no errors occuring. Further check if the optimization procedure provides
the performance, you expected and then do the second parallelization step in the equal
manner. If the performance is not sufficient, repeat optimization and parallelization until
the performance needs are met.

1 int JacobiSolver (int N, double dx)
2 {
3
4 int iterations = 0;
5
6 double err = tolerance ;
7 double D = dt / (dx * dx) ;
8
9 //

10 // Start the iterative solver
11

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

39/78

PfiT - The User’s Guide

12 // Iteration until the solver converges
13 while ((iterations < MaxIterations) && (err >= tolerance))
14 {
15
16 err = tolerance ;
17
18 # pragma acc parallel loop reduction (max: err)
19 copyin (Aold[0: N * N], q[0: N * N], D, dt , dx)
20 copy(err)
21 {
22
23 // Iterate over all nodes of the prescribed area/ matrix
24 // (i counts to the y direction , j counts to the x direction)
25 for(int i = 1; i < N - 1; ++i)
26 {
27
28 for(int j = 1; j < N - 1; ++j)
29 {
30
31 // Calculate the new values from the values of the 4 neigbours and the
32 // (i,j) node of the previous time step
33 A[j + i * N] = dt * q[j + i * N]
34 + Aold[j + i * N]
35 + D * (Aold[(j + 1) + i * N]
36 + Aold[j + (i + 1) * N]
37 - 4.0 * Aold[j + i * N]
38 + Aold[(j - 1) + i * N]
39 + Aold[j + (i - 1) * N]);
40
41 // Calculate the error of the iteration (in this case maximum error ,
42 // the eucledian error is also applicable .
43 err = max(err , fabs(Aold[j + i *N] - A[j + i * N]));
44
45 }
46
47 }
48
49 }
50
51 // Swap the arrays
52 # pragma acc parallel loop copyin (A[0: N * N]) copyout (Aold [0: N * N])
53 for(int i = 0; i < N; ++i)
54 for(int j = 0; j < N; ++j)
55 Aold[j + i * N] = A[j + i * N];
56
57
58 ++ iterations ;
59
60 }
61
62
63 if (iterations < MaxIterations)
64 return iterations ;

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

40/78

PfiT - The User’s Guide

65 else
66 return MaxIterations ;
67 %
68 }

Listing 2.11: Five point stencil (OpenACC)

Using the PGI C compiler we got an approximate speed up of eight in this example
using the GPGPU (Nvidia Tesla K80). An interesting observation was, that using the
multicore option the speed up was approximately twelve (node has 16 cores with two
hyperthreads each). This was against our expectations, but the speed up value of eight
was close to other benchmark on K80 GPGPUs of other users.

Some concluding remarks:

• Dynamical allocated memory have to declared in C/C++ together with the restrict
keyword, to prevent preventing parallelization (pointer aliasing).

• No jumps out of or into the parallel region should be done (with break, return,
goto, etc.)

• Never forget to submit the job to a queue qith GPGPU capabilities. Otherwise the
job will fail.

An free introduction to OpenACC can be found on [7].

2.3.4 OpenMP
In this subsection the OpenMP version of listing 2.22 will be presented. OpenMP is a
pragma based shared memory parallel programming paradigm. The difference to Ope-
nACC is, that OpenMP acts on the CPU with threads and not on the GPU. The OpenMP
API was presented in 1997 (Fortran) and 1998 (C/C++) in version 1.0. OpenMP was
developed by several companies and institutions, for example AMD, IBM, Intel, Nvidia,
NEC and more (the OpenMP Architecture Review Board (OpenMP ARB). It is now
(since 11/2018) in the version 5.0. Like OpenACC OpenMP supports loop paralleliza-
tion with threads. OpenMP uses compiler pragmas, library functions and environment
variables for parallelization and in contradiction to MPI OpenMP can be used for paral-
lelization of programs on a multicore system, while MPI in general is used for internode
communication.

The following OpenMP listing parallelizes listing 2.22. We will introduce very basic
OpenMP features to get an idea how to parallelize the serial code. For a deeper introduc-
tion to OpenMP please see for example [8] and [9]. As in the OpenACC case the code
can be parallelized iteratively and consists of sequential and parallel parts (which are
beginning with #pragma omp parallel). When the program enters the parallel part, a
team of threads will be created. This team consists of a master thread and a number of
additional threads which solve the problem in the specified region together (for example
in a SPMD or a workshare manner). At the end of the parallel region, all threads (except
the master thread) are going to sleep and will be woken up, when the code enters the
next parallel region (which could be the same parallel region again). This is sketched in

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

41/78

PfiT - The User’s Guide

the listing 2.12.

To use OpenMP, the C/C++ programmer (we will restrict to C/C++ in this docu-
ment) has to include the following line into the main source file (first line):

1 # include <omp.h>
2
3 Sequential code (Code executed on the CPU)
4
5 # pragma omp parallel
6 {
7
8 # pragma omp for
9 for (int i = 0; i < n; ++i)

10 (Code executed by team of threads on the CPU)
11
12 }
13
14 Sequential code (Code executed on the CPU)

Listing 2.12: Include OpenMP header in C/C++ and the main idea of OpenMP
(sequential and parallel regions).

Furthermore a special flag has to be set for compiling an OpenMP program. We will
present this flag for the Intel, GNU and PGI C compiler (every compiler with an example
compilation line):

• Intel C compiler: icc -openmp -o file file.c

• GNU C compiler: gcc -fopenmp -o file file.c

• PGI C compiler: pgcc -mp -o file file.c

In our example case in line 14 of the listing the parallel region will be created with
#pragma omp parallel and the library function num_threads creates as much threads
as demanded (in our case the number of processors or hardware threads, which is im-
plementation dependent of the compiler). In the next #pragma line, the following two
for loops will be parallelized. At the moment we will only present the #pragma omp
for part of the line. Without the collapse and schedule clause the outer loop will
be distributed over the threads (if possible evenly) to process them in parallel, so that
every thread executes a part of the for loop. With the additional schedule clause, it is
possible to control the kind of scheduling of the for loop over the team of threads. The
following possibilities can be chosen.

• schedule(static[,chunk]): Deal-out to every thread a chunk of initial or manually
specified size of the for loop. For example a loop with 1000 iterations and a chunk
size of 100 the 10 threads get for example 100 for loops and are working on them.
This kind of scheduling is the default setting and has the fewest overhead, but a
lack of this kind is the missing felexibility while scheduling.

• schedule(dynamic[,chunk]): Deal-out to every thread a variable amount of loops.
If a thread has finished its workload it grabs a new amount of loops (but this value

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

42/78

PfiT - The User’s Guide

is unpredictable). Since the logic of this case is complex, this kind of scheduling
often has an overhead.

• schedule(guided[,chunk]): Special case of the dynamical case to reduce scheduling.

• schedule(auto): In this case the runtime can learn from further runs of the same
loop.

In very often cases, a static scheduling is recommended because of the minor scheduling
overhead (static scheduling is the default adjustment). Finally the collapse clause fuses
those two for loops (which have to be perfectly nested loops, waht means, that they come
directly after each other) to one loop, to exploit further parallelism. The number in the
clause denotes the number of loops, which should be collapsed. If this number equals
for example to four, then four perfectly nested loops can be collapsed to one loop. The
analogous situation can be seen in the next parallel loop and the parallel region ends at
line 36. From line 37 until the end of the outer for loop the code will be processed again
as a serial program and begins as a serial program at the head of the outer for loop, what
means that the team of threads will be reduced to one thread again. If the code enters
the parallel region again, the threads are activated again.

1 int JacobiSolver (int N, double dx)
2 {
3
4 double D = dt / (dx * dx) ;
5
6 int num_threads = omp_get_num_procs ();
7
8 //
9 // Start the iterative solver

10
11 for (int k = 0; k < MaxIterations ; k++)
12 {
13
14 # pragma omp parallel num_threads (num_threads)
15 {
16
17 # pragma omp for collapse (2) schedule (static)
18 for(int i = 1; i < N - 1; ++i)
19 for(int j = 1; j < N - 1; ++j)
20 A[j + i * N] = dt * q[j + i * N]
21 + Aold[j + i * N]
22 + D * (Aold[(j + 1) + i * N]
23 + Aold[j + (i + 1) * N]
24 - 4.0 * Aold[j + i * N]
25 + Aold[(j - 1) + i * N]
26 + Aold[j + (i - 1) * N]);
27
28 # pragma omp for collapse (2) schedule (static)
29 for(int i = 0; i < N; ++i)
30 for(int j = 0; j < N; ++j)
31 Aold[j + i * N] = A[j + i * N];
32

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

43/78

PfiT - The User’s Guide

33
34 }
35
36 }
37
38 return MaxIterations ;
39
40 }

Listing 2.13: Five point stencil (OpenMP)

To gain better performance it is recommended to bind the threads while runtime to a
CPU or SMT entity. This can be done for example on the command line with (BASH
style):

export OMP_PROC_BIND=true

Otherwise it could happen, that the threads will change the CPU entities while runtime
because of scheduling. This leads to runtime overhead and is decreasing performance.
It is also possible to set thread binding via a library function. For more details please see24.

Finally the similarities of the initiating the parallelization with OpenMP and OpenACC
are obvious, since both paradigms are using very similar pragmas and the same kind of
parallelization method (directive based parallelization).

2.3.5 CUDA
In 2007 NVIDIA published the programming platform and programming model CUDA
with a C/C++ language extension for computations on CPUs and NVIDIA GPUs. The
sequential part of the CUDA program will be executed on the host (CPU) and spe-
cial marked regions will be offloaded to be computed on the GPU (device). Offloading
parts of a program to be computed on the NVIDIA GPU has the advantage, that the
computation on the GPU is much more efficient, than on the CPU and speed up often
will increase dramatically. CUDA was introduced as a C platform but nowadays it is
extended to Python, Fortran or Matlab.

Let’s start looking at CUDA by examining some characteristics of the onboard GPU(s),
for example the number of GPUs, the major and minor number of the GPU capabilities,
the amount of global, shared and constant memory, the number of threads and blocks
per direction, etc.

1 # include <stdio .h>
2 # include <stdlib .h>
3 # include <time.h>
4
5
6 int main(int argc , char ** argv)
7 {

24https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

44/78

https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf

PfiT - The User’s Guide

8
9 cudaDeviceProp prop;

10
11 int count ;
12 cudaGetDeviceCount (& count);
13
14 for (int i = 0; i < count ; ++i)
15 {
16
17 cudaGetDeviceProperties (&prop , i);
18
19 fprintf (stdout , "GPU number : %d\n", i);
20 fprintf (stdout , "GPU count : %d\n", count);
21 fprintf (stdout , "GPU name: %s\n", prop.name);
22 fprintf (stdout , "GPU major number : %d\n", prop. major);
23 fprintf (stdout , "GPU minor number : %d\n", prop. minor);
24 fprintf (stdout , "GPU total global memory : %zd (in GB)\n",
25 (int) (prop. totalGlobalMem / 1024/ 1024/1024));
26 fprintf (stdout , "GPU total constant memory (in KB): %d\n",
27 (int) (prop. totalConstMem / 1024));
28 fprintf (stdout , "GPU shared memory per block (in KB): %d\n",
29 (int) (prop. sharedMemPerBlock / 1024));
30 fprintf (stdout , "GPU maximum count of threads per block : %d\n",
31 (int) (prop. maxThreadsPerBlock));
32 fprintf (stdout , "GPU maximum count of threads per dimension (x,y,z):
33 (%d, %d, %d)\n", prop. maxThreadsDim [0], prop. maxThreadsDim [1],
34 prop. maxThreadsDim [2]);
35 fprintf (stdout , "GPU maximum count of blocks per dimension (x,y,z):
36 (%d, %d, %d)\n", prop. maxGridSize [0], prop. maxGridSize [1],
37 prop. maxGridSize [2]);
38 fprintf (stdout , "GPU warp size: %d\n", prop. warpSize);
39 fprintf (stdout , " --\n\n");
40
41 }
42
43 return 0;
44
45 }

Listing 2.14: Listing to get the characteristics of the GPUs.

To compile this program the following requirements have to be fulfilled:

• A node/computer with a CUDA capable graphics card,

• a NVIDIA device driver,

• the NVIDA CUDA toolkit and

• a C compiler and CUDA capable compiler (nvcc in our case) to compile the host
and device code separately. The host part of the code will be compiled with the C
compiler (for example GNU C Compiler) and the device code with the CUDA C
compiler (nvcc) only with the call of nvcc. At the end of this step, the serial part
and the CUDA part of the program will be bound to one program and executed.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

45/78

PfiT - The User’s Guide

To compile this program, use for example the following line (filename must end with .cu):

nvcc -arch=sm_35 -o getProperties getProperties.cu

in which -arch=sm_35 means, that we will use at least the compute capability 3.5 of the
NVIDIA GPGPU. An example result of the program run looks as follows:

1 GPU number : 0
2 GPU count : 2
3 GPU name: Tesla K80
4 GPU major number : 3
5 GPU minor number : 7
6 GPU total global memory : 11 (in GB)
7 GPU total constant memory (in KB): 64
8 GPU shared memory per block (in KB): 48
9 GPU maximum count of threads per block : 1024

10 GPU maximum count of threads per dimension (x,y,z): (1024 , 1024 , 64)
11 GPU maximum count of blocks per dimension (x,y,z): (2147483647 , 65535 , 65535)
12 GPU warp size: 32
13
14 --
15
16 GPU number : 1
17 GPU count : 2
18 GPU name: Tesla K80
19 GPU major number : 3
20 GPU minor number : 7
21 GPU total global memory : 11 (in GB)
22 GPU total constant memory (in KB): 64
23 GPU shared memory per block (in KB): 48
24 GPU maximum count of threads per block : 1024
25 GPU maximum count of threads per dimension (x,y,z): (1024 , 1024 , 64)
26 GPU maximum count of blocks per dimension (x,y,z): (2147483647 , 65535 , 65535)
27 GPU warp size: 32

Listing 2.15: List of the characteristics of the GPUs.

This cluster node has 2 NVIDIA Kepler K80 GPGPUs with total global memory of 11
GiB each. The compute capablility number is 3.7. and describes the architecture of the
GPGPU, for example the sizes of the global and shared memory, the number of registers,
the features of the GPGPU. The number of threads is bounded to 1024 threads per
block for the Kepler K80 GPGPU. The size of the constant memory is 48 KiB and the
size of the shared memory is 48 KiB per block. The meaning of these characteristics will
be explained later.

After getting a short overview over the hardware characteristics, we will start with
a first example. In general a CUDA introduction will begin with the vector addition,
the hello world example for CUDA. We will continue this tradition and in this example
we will add two dynamically allocated vectors a and b on the GPU and store them in a
third vector c. Listing 2.16 illustrates this by using CUDA.

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

46/78

PfiT - The User’s Guide

1 # include <stdio .h>
2 # include <stdlib .h>
3
4
5 # define N 204748364
6 # define N_THREADS 16
7 # define OUTPUT
8
9 __global__ void vectoraddition (double *a, double *b, double *c)

10 {
11
12 unsigned long long int tid = threadIdx .x + blockIdx .x * blockDim .x;
13
14 if (tid < N)
15 {
16
17 c[tid] = a[tid] + b[tid];
18 tid += blockDim .x * gridDim .x;
19
20 }
21
22 }
23
24
25 int main(int argc , char ** argv)
26 {
27
28 double *a = (double *) malloc (N * sizeof (double)) ;
29 double *b = (double *) malloc (N * sizeof (double)) ;
30 double *c = (double *) malloc (N * sizeof (double)) ;
31
32 double *d_a = NULL;
33 double *d_b = NULL;
34 double *d_c = NULL;
35
36 cudaMalloc ((void **)&d_a , N * sizeof (double));
37 cudaMalloc ((void **)&d_b , N * sizeof (double));
38 cudaMalloc ((void **)&d_c , N * sizeof (double));
39
40 //
41 // Initialize the vectors a and b (vectors on host)
42 for(unsigned long long int i = 0; i < N; ++i)
43 {
44
45 a[i] = 1.0 * i;
46 b[i] = 1.0 * i;
47
48 }
49
50 cudaMemcpy (d_a , a, N * sizeof (double), cudaMemcpyHostToDevice);
51 cudaMemcpy (d_b , b, N * sizeof (double), cudaMemcpyHostToDevice);
52
53 vectoraddition <<< (N + (N_THREADS - 1)) / N_THREADS , N_THREADS >>>

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

47/78

PfiT - The User’s Guide

54 (d_a , d_b , d_c);
55
56 cudaMemcpy (c, d_c , N * sizeof (double), cudaMemcpyDeviceToHost);
57
58 //
59 // free allocated memory on device
60 cudaFree (d_a);
61 cudaFree (d_b);
62 cudaFree (d_c);
63
64 //
65 // free allocated memory on host
66 free(a);
67 free(b);
68 free(c);
69
70 return 0;
71
72 }

Listing 2.16: Listing of the vectoraddition in CUDA C.

This program is divided into 5 main parts:

• (Serial Code),

• allocating space for the vectors a, b and c in the host memory and initilization of
a and b (line 28 - 30, 42 - 48),

• allocating space for the vectors a, b and c (resp. d_a, d_b and d_c) on the
device memory (line 32 - 38),

• copy the contents of the vectors a and b (host) to d_a and d_b (device),

• preparing and performing computations on the GPGPU (line 53 f. and 9 - 22),

• Copy the contents of the resultvector d_c back to the host in vector c (line 56),

• Freeing allocated memory on device and host (see line 60 - 68),

• (Serial Code).

This is a often used approach in writing CUDA programs, that means executing the (se-
rial) code on the CPU, allocating host and GPGPU memory, copying the contents of the
memory of the host datastructures to the respective GPGPU datastructures, computing
on the GPGPU and copying back the result. Now we will go more into detail by means
of the above vectoraddition example. In the first step the serial code on the CPU will
be executed. The next two steps are considering the memory allocation steps. In the
first step the memory space for the vectors a and b will be dynamically allocated on the
host memory (main memory) with malloc (line 28 - 30). In the second step dynamical
allocating of memory on the device (GPU) will be executed, to store the vectors a, b
and c in the GPU memory vectors d_a, d_b and d_c. The additional allocation of
memory on the GPGPU is necessary, since host and GPGPU memory have different

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

48/78

PfiT - The User’s Guide

address spaces and no automatical access to the data of the respective other memory is
possible. If the host needs access to the GPGPU data (and vice versa), the data has to
be copied from the device to the host (and vice versa). The vectors in the host memory
(a, b and c) and in the device memory (d_a, d_b and d_c) have the same number of
elements and corresponds to each other in that way, that in the next step the data of
vector a will be copied into the array d_a and the data of vector b into the vector d_b
on the GPGPU by using the function cudaMemcpy. cudaMemcpy copies the contents of
the vector a of the size N * sizeof(double) from the source a to the destination
vector d_a (the same for b and d_b; see line 50 f.). The direction of copying is defined
in the last argument of cudaMemcpy. In our case the direction of copying is given by
cudaMemcpyHostToDevice, what means that the copyprocess takes place from a (b) to
d_a (d_b). Finally it has to be mentioned, that the host vectors a and b were filled
with values in line 42 until 48.

After presenting these four introductory steps, the actual computation process on the
GPGPU can take place. This will be done with the call of the kernel(function) matrixaddition.
A kernel is a part of the program (a function) which will run on the GPGPU. This kernel
and its launch is the core of this listing and a kernel call (kernel launch) is a classical
function call (in this case with the arguments d_a, d_b and d_c (see the round braces
at the end of the function call)) with additional CUDA specific parameters (a defined
number of threads and block of threads). In the following we will disclose the secret
about the three > and <. The basic working unit of GPGPUs and of CUDA is the thread.
Furthermore a predefined number of threads defines a block of threads and these block
of threads constitutes a grid of blocks. This paradigm is called SIMT (single instruction,
multiple threads), a subclass of SIMD (single instruction, multiple data). Every thread
and block of threads gets its own unique identity number (threadId and blockId) to
distinguish threads and blocks among themselves. We will illustrate this in figure 2.1 for
the 1D case. In this example 32 threads can be found which are aggregated into four

Figure 2.1: Exemplary presentation of the threads and block of threads.

blocks of threads (each block consists of eight threads). threadIdx.x denotes the number
of a thread in a threadblock, blockIdx.x the number of the block of threads. The global
number of a thread can be computed as follows

unsigned long long int tid = threadIdx.x + blockIdx.x * blockDim.x
;

27 = 3 + 3 * 8

in which blockDim.x denotes the size of a threadblock in x direction. In this toy example
the size of a block in x direction is 8 threads. With these values in mind, the calculation

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

49/78

PfiT - The User’s Guide

of the global thread index can be done. If we want to compute the Index of thread 27,
the formula will be concetized as in the listing above.

To summarize the results of this paragraph, we will list the central terms here:

• The thread is the basic working unit. Every thread gets its own thread id which is
stored in threadIdx.x for the x direction.

• A number of threads is aggregated to a block of threads which x dimension is stored
in blockDim.x and the block index is stored in blockIdx.x.

• The blocks again are aggegated to a grid, which dimension in x direction is stored
in gridDim.x.

Away from the above toy example in the case of our Kepler K80 GPGPU case these
constants have the following values (see listing 2.15):

• In every block the maximum number of threads is 1024.

• In x direction 1024 threads can be used (blockDim.x = 1024),

• and the maximum count of blocks in the x direction of the grid is 2147483647
(grdDim.x = 2147483647).

After this theory paragraph we will explain the call of the kernel and the kernel in detail.
In line 53 f. we will call the kernel with the definition of the layout of blocks and threads
to solve the problem. In one dimension (especially in the case of the vectoraddition), the
call could be of the following kind:

• matrixaddition«< 1, 1 »>(d_a, d_b, d_c),

• matrixaddition«< N, 1 »>(d_a, d_b, d_c),

• matrixaddition«< 1, M »>(d_a, d_b, d_c),

• matrixaddition«< N, M »>(d_a, d_b, d_c)

Case 1 is equal to a single thread running on a CPU (but in this case on the GPGPU).
To be more precisely the kernel will be launched in one block and with one thread. In
the second case the kernel runs on N blocks and in each block only one thread will be
used. The third case is vice versa, that means the kernel runs in one block and on M
threads. In the last case the kernel will be executed on N blocks while in each block M
threads are activated. Apart from these general examples in our case we start the kernel
on N_THREADS per block and with (N + (N_THREADS - 1)) / N_THREADS blocks.
The correction of N in the nominator with the value of (N_THREADS - 1) is caused by
the fact, that the integerdivision will lead without correction to zero blocks (if N <
N_THREADS) and thus no threads will be started or we will get too little blocks (exactly
one block will be missing, unless N modN_THREADS = 0)

The kernel will be executed by each thread and in the kernel vectoraddition the index
of the thread will be calculated, which will do the computation for the element tid. If

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

50/78

PfiT - The User’s Guide

this index is smalller than N the calculation of the appropriate element of the two vectors
will be done (line 17) and the index will be incremented (line 18). The kernelexecution
will end, if for all threads the condition is evaluated to false. This is a kind of implicit
barrier and after finishing the kernel the code will be further executed in line 56. In this
line the result of the vectoraddition will be copied back from the device memory (d_c)
to the host array (c). After that operation it is possible to dump the vector to a file on
disk or to send it to stdout (output on the screen).

After computing the matrix sum and copying the result back to the host, the allo-
cated GPU memory can be freed with cudaFree, since it is not needed anymore (see
lines 75 - 77).

At the end of this example we will consider the speed up of the CUDA vectoraddi-
tion. In the first case we will consider the speed up of the CUDA program with 1 block
and one thread compared to the multiblock and multithread version. In the second
example we will consider the Speed up of a single core and single threaded CPU program
with the CUDA version with multiiple blocks and threads.

Now we will slightly expand our example to 2D what means, that we will discuss matrix
addition with CUDA by reference to listing 2.17.

1 # include <stdio .h>
2 # include <stdlib .h>
3 # include <time.h>
4
5
6 # define N 2048
7 # define N_THREADS 32
8 # define OUTPUT
9

10 __global__ void matrixaddition (double *a, double *b, double *c)
11 {
12
13 unsigned long int col_tid = threadIdx .x + blockIdx .x * blockDim .x;
14 unsigned long int row_tid = threadIdx .y + blockIdx .y * blockDim .y;
15 unsigned long int index = col_tid + row_tid * N;
16
17 if ((col_tid < N) && (row_tid < N))
18 {
19
20 c[index] = a[index] + b[index];
21
22 col_tid += blockDim .x * gridDim .x;
23 row_tid += blockDim .y * gridDim .y;
24
25 }
26
27 }
28
29
30 int main(int argc , char ** argv)

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

51/78

PfiT - The User’s Guide

31 {
32
33 double A[N][N];
34 double B[N][N];
35 double C[N][N];
36
37 double *d_a = NULL;
38 double *d_b = NULL;
39 double *d_c = NULL;
40
41 cudaMalloc ((void **)&d_a , N * N * sizeof (double));
42 cudaMalloc ((void **)&d_b , N * N * sizeof (double));
43 cudaMalloc ((void **)&d_c , N * N * sizeof (double));
44
45 for(int i = 0; i < N; ++i)
46 for(int j = 0; j < N; ++j)
47 {
48
49 A[i][j] = (double) (i + j);
50 B[i][j] = (double) (i + j);
51
52 }
53
54 cudaMemcpy (d_a , A, N * N * sizeof (double), cudaMemcpyHostToDevice);
55 cudaMemcpy (d_b , B, N * N * sizeof (double), cudaMemcpyHostToDevice);
56
57
58 dim3 dimBlock (N_THREADS , N_THREADS);
59 dim3 dimGrid ((N + (N_THREADS - 1)) / N_THREADS , (N + (N_THREADS - 1) /

N_THREADS));
60 matrixaddition <<< dimGrid , dimBlock >>>(d_a , d_b , d_c);
61
62 cudaMemcpy (C, d_c , N * N * sizeof (double), cudaMemcpyDeviceToHost);
63
64 # ifdef OUTPUT
65 for(int i = 0; i < N; ++i)
66 {
67 for(int j = 0; j < N; j++)
68 fprintf (stdout , "%lf ", C[i][j]);
69
70 fprintf (stdout , "\n");
71
72 }
73 # endif
74
75 cudaFree (d_a);
76 cudaFree (d_b);
77 cudaFree (d_c);
78
79 return 0;
80
81 }

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

52/78

PfiT - The User’s Guide

Listing 2.17: Addition of two square matrices.

In this 2D example, we have to define the number of blocks and threads in x AND y
direction. The first two steps are considering the memory allocation steps. In the first
step the memory space for the matrices A, B and C will be allocated on the host memory
(main memory). In our case the allocation will be done in a static way, dynamical alloca-
tion is also possible. But be careful, since dynamic allocation of a matrix often leads to
non contiguous space allocation of the matrix. Furthermore we will treat the matrices
on the host as 2D matrices, in which it is possible to flatten those datastructures to
vectors of size N ×N . In the second step dynamical allocating of memory on the device
(GPU), to store the matrices A, B and C in d_a, d_b and d_c (these are vectors on
the GPU), will be done (see lines 41 until 43). The datastructures on the host (A, B and
C) and the device (d_a, d_b and d_c) have the same number of elements. In line 45
until 52 the matrices A and B are initialized and are copied to the device memory with
cudaMemcpy (line 54 f.). The direction of copying is formulated in the last argument of
cudaMemcpy. In our case the direction of copying is given by cudaMemcpyHostToDevice,
what means that the copyprocess takes place from A (B) to d_a (d_b).

After these introductory allocation steps, the actual computation process on the GPGPU
can take place. In this concrete example we defined 32 threads for each direction. The
thread and block layout can be chosen differently (for example N_THREADS = 16), but
for every selection it must be taken into account, that the maximum value of threads
of a block does not exceed the thread value boundary (to ensure that all threads of a
block can be placed on one compute unit and can share the same local memory). The
following things has to be taken into account:

• In every block the maximum number of threads is 1024.

• In x direction 1024 threads can be used, in y direction too and in z direction only
64 threads are valid. If this example would be a vectoraddition, 1024 threads could
be used (x direction) for a thread block which is in our case identical with the
maxuimum number of threads in a block (see line GPU maxThreadsPerBlock in
listing ??). If we want to partition a 2D area into blocks of threads, we generally
need the threads of the y direction. But in this case we can only request for example
32 threads for the x and y direction since the maximum allowed numbers of threads
of a block is 1024.

To define the number of thread blocks in line 59f. the matrix size N will be devided by
the number of chosen threads per block. Since the integer division may result to zero (if
N < N_THREADS), the correction with (N_THREADS - 1) will circumvent this problem (in
general too few threadblocks will be allocated, if this correction is missing). After defining
the number of blocks and threads in one block, the call of the kernel matrixaddition
can be done with the defined counts of blocks and threads. The kerneldefinition of
matrixaddition starts in line 10. The __global__ qualifier at the function head declares
this function as a kernel function which will be executed on the GPGPU and is only
callable from the host. In this kernel (with the Matrices A, B and C as arguments) the
matrixadditon will be executed. In the lines 13 and 14 the row and column index of the

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

53/78

PfiT - The User’s Guide

Figure 2.2: Exemplary presentation of the threads and block of threads in 2d (taken
from developer.download.nvidia.com/compute/developertrainingmaterials/

presentations/cuda_language/Introduction_to_CUDA_C.pptx, Slide 66).

unique thread is calculated and some new constants are introduced to control the work
of the threads, which we will now explain:

• threadIdx.x, threadIdx.y: The x and y index of a thread in a block.

• blockDim.x, blockDim.y: The dimension (number of threads) of a block in x and
y direction.

• blockIdx.x, blockIdx.y: The blockindex of the thread in x and y direction.

In line 15 the actual index of the matrixelement to be computed will be calculated and
the expression
unsigned long int index = col_tid + row_tid * N;

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

54/78

developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx

PfiT - The User’s Guide

has the following meaning: This element has to be calculated by the thread with the
column index col_ind and row index row_ind times N in which the row counting starts
with the upper row of the matrix (the row with index zero).

To process the result of the GPGPU computations (for example by storing the data
in a file), the data has to be copied back from the device memory to the host (main)
memory. This task will be done by another call of cudaMemcpy in line 62. It have to
mentioned, that in this case the target array is C and the source array is d_C. Furthermore
the copy direction now is from the device to the host (cudaMemcpyDeviceToHost).

After computing the matrix sum and copying the result back to the host, the allo-
cated GPU memory can be freed with cudaFree, since it is not needed anymore (see
lines 75 - 77).

At the end of this example we will consider the speed up of the CUDA matrixddition.
We will do the same steps as in the vectoraddition example.

2.3.6 MPI
In contrast to OpenMP, MPI is based on the distrubuted parallel paradigm. That means,

We will begin with a look at the vectoraddition
1 # include <stdio .h>
2 # include <stdlib .h>
3
4 # include "mpi.h"
5
6 # define NR_ELEMENTS 1000000
7
8 int main(int argc , char ** argv)
9 {

10
11 double a[NR_ELEMENTS], b[NR_ELEMENTS], c[NR_ELEMENTS];
12
13
14 MPI_Init (&argc , &argv);
15
16 int rank = 0;
17 int size = 0;
18
19 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
20 MPI_Comm_size (MPI_COMM_WORLD , &size);
21
22 double a_recv [NR_ELEMENTS / size];
23 double b_recv [NR_ELEMENTS / size];
24 double c_recv [NR_ELEMENTS / size];
25
26 if (rank == 0)
27 for (int i = 0; i < NR_ELEMENTS ; ++i)
28 {

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

55/78

PfiT - The User’s Guide

29
30 a[i] = (double) i; //(rand () % 1000);
31 b[i] = (double) i; //(rand () % 1000);
32
33 }
34
35 MPI_Scatter (a, NR_ELEMENTS / size , MPI_DOUBLE , a_recv , NR_ELEMENTS / size ,

MPI_DOUBLE , 0, MPI_COMM_WORLD);
36 MPI_Scatter (b, NR_ELEMENTS / size , MPI_DOUBLE , b_recv , NR_ELEMENTS / size ,

MPI_DOUBLE , 0, MPI_COMM_WORLD);
37
38 for(int i = 0; i < NR_ELEMENTS / size; ++i)
39 c_recv [i] = a_recv [i] + b_recv [i];
40
41 MPI_Gather (c_recv , NR_ELEMENTS / size , MPI_DOUBLE , c, NR_ELEMENTS / size ,

MPI_DOUBLE , 0, MPI_COMM_WORLD);
42
43 if (rank == 0)
44 {
45
46 for(int i = 0; i < NR_ELEMENTS ; ++i)
47 fprintf (stdout , "%lf ", c[i]);
48
49 fprintf (stdout , "\n");
50
51 }
52
53 MPI_Finalize ();
54
55 return 0;
56
57 }

Listing 2.18: Five point stencil (Serial version)

Now the vectoradditionexample will be slightly extended to the matrixaddition.
1 # include <stdio .h>
2 # include <stdlib .h>
3
4 # include "mpi.h"
5
6 # define NR_ELEMENTS 10000
7
8 int main(int argc , char ** argv)
9 {

10
11 double A[NR_ELEMENTS][NR_ELEMENTS];
12 double B[NR_ELEMENTS][NR_ELEMENTS];
13 double C[NR_ELEMENTS][NR_ELEMENTS];
14
15
16 MPI_Init (&argc , &argv);
17

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

56/78

PfiT - The User’s Guide

18 int rank = 0;
19 int size = 0;
20
21 double start , end;
22
23 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
24 MPI_Comm_size (MPI_COMM_WORLD , &size);
25
26 double A_recv [NR_ELEMENTS / size][NR_ELEMENTS];
27 double B_recv [NR_ELEMENTS / size][NR_ELEMENTS];
28 double C_recv [NR_ELEMENTS / size][NR_ELEMENTS];
29
30 start = MPI_Wtime ();
31
32 if (rank == 0)
33 {
34
35 for (int i = 0; i < NR_ELEMENTS ; ++i)
36 for (int j = 0; j < NR_ELEMENTS ; ++j)
37 {
38
39 A[i][j] = (double) (i + j); //(rand () % 1000);
40 B[i][j] = (double) (i + j); //(rand () % 1000);
41 C[i][j] = 0.0;
42
43 }
44
45 }
46
47 MPI_Scatter (A, (NR_ELEMENTS / size) * NR_ELEMENTS , MPI_DOUBLE , A_recv , (

NR_ELEMENTS / size) * NR_ELEMENTS , MPI_DOUBLE , 0, MPI_COMM_WORLD);
48 MPI_Scatter (B, (NR_ELEMENTS / size) * NR_ELEMENTS , MPI_DOUBLE , B_recv , (

NR_ELEMENTS / size) * NR_ELEMENTS , MPI_DOUBLE , 0, MPI_COMM_WORLD);
49
50 for(int i = 0; i < NR_ELEMENTS / size; ++i)
51 for (int j = 0; j < NR_ELEMENTS ; ++j)
52 C_recv [i][j] = A_recv [i][j] + B_recv [i][j];
53
54 MPI_Gather (C_recv , (NR_ELEMENTS / size) * NR_ELEMENTS , MPI_DOUBLE , C, (

NR_ELEMENTS / size) * NR_ELEMENTS , MPI_DOUBLE , 0, MPI_COMM_WORLD);
55
56 if ((rank == 0) && (NR_ELEMENTS < 10))
57 {
58
59 for(int i = 0; i < NR_ELEMENTS ; ++i)
60 {
61
62 for(int j = 0; j < NR_ELEMENTS ; ++j)
63 fprintf (stdout , "%lf ", C[i][j]);
64
65 fprintf (stdout , "\n");
66
67 }

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

57/78

PfiT - The User’s Guide

68
69 }
70
71 end = MPI_Wtime ();
72
73 fprintf (stdout , " Runtime with %d processes : %lf !\n", rank , end - start);
74
75
76 MPI_Finalize ();
77
78 return 0;
79
80 }

Listing 2.19: Five point stencil (Serial version)

After treating two introductory examples to exemplify the usage of MPI, one further
step to the Jacobi problem will be done. This is the matrixmultiplication in two different
versions. In the first version the multiplication will be done with the blocking point to
point operations send and receive (MPI_Send and MPI_Recv).

1 # include <stdio .h>
2 # include <stdlib .h>
3
4 # include "mpi.h"
5
6 # define NR_ELEMENTS 4
7
8 double frob_norm = 0.0 , frob_norm_part = 0.0;
9

10 int main(int argc , char ** argv)
11 {
12
13 double start = 0.0 , end = 0.0;
14 double B[NR_ELEMENTS][NR_ELEMENTS];
15
16 int rank = 0, size = 0;
17 int err = 0;
18
19 MPI_Init (&argc , &argv);
20
21
22 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
23 MPI_Comm_size (MPI_COMM_WORLD , &size);
24
25 if (size - 1 > NR_ELEMENTS)
26 MPI_Abort (MPI_COMM_WORLD , err);
27
28 double A_recv [NR_ELEMENTS / (size - 1)][NR_ELEMENTS];
29 double C_recv [NR_ELEMENTS / (size - 1)][NR_ELEMENTS];
30
31
32 if (rank == 0)

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

58/78

PfiT - The User’s Guide

33 {
34
35 start = MPI_Wtime ();
36
37 double A[NR_ELEMENTS][NR_ELEMENTS];
38 double C[NR_ELEMENTS][NR_ELEMENTS];
39
40 for (int i = 0; i < NR_ELEMENTS ; ++i)
41 for (int j = 0; j < NR_ELEMENTS ; ++j)
42 {
43
44 A[i][j] = (double) (i + j);
45 B[i][j] = (double) (i + j);
46 C[i][j] = 0.0;
47
48 }
49
50 for(int i = 1; i < size; ++i)
51 MPI_Send (A[(i - 1) * (NR_ELEMENTS / (size - 1))], NR_ELEMENTS * (

NR_ELEMENTS / (size - 1)), MPI_DOUBLE , i, 100 , MPI_COMM_WORLD);
52
53 for(int i = 1; i < size; ++i)
54 MPI_Send (B, NR_ELEMENTS * NR_ELEMENTS , MPI_DOUBLE , i, 101 , MPI_COMM_WORLD

);
55
56 for(int i = 1; i < size; ++i)
57 MPI_Recv (C[(i - 1) * (NR_ELEMENTS / (size - 1))], NR_ELEMENTS * (

NR_ELEMENTS / (size - 1)), MPI_DOUBLE , i, 102 , MPI_COMM_WORLD ,
MPI_STATUS_IGNORE);

58
59 end = MPI_Wtime ();
60 fprintf (stdout , " Runtime with %d processes and no output : %lf !\n", size ,

end - start);
61
62 //
63 // Output of result to file
64
65 FILE *fp = fopen (" output .txt", "w");
66
67 fprintf (stdout , "rank = %d, sum = %lf\n", rank , frob_norm);
68 fprintf (fp , "%lf\n", frob_norm);
69 for(int i = 0; i < NR_ELEMENTS ; ++i)
70 {
71
72 for(int j = 0; j < NR_ELEMENTS ; ++j)
73 fprintf (fp , "%lf ", C[i][j]);
74
75 fprintf (fp , "\n");
76
77 }
78
79 }
80

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

59/78

PfiT - The User’s Guide

81
82 if (rank > 0)
83 {
84
85 MPI_Recv (A_recv , NR_ELEMENTS * (NR_ELEMENTS / (size - 1)), MPI_DOUBLE ,

0, 100 , MPI_COMM_WORLD , MPI_STATUS_IGNORE);
86 MPI_Recv (B, NR_ELEMENTS * NR_ELEMENTS , MPI_DOUBLE , 0, 101 , MPI_COMM_WORLD ,

MPI_STATUS_IGNORE);
87
88 for(int i = 0; i < NR_ELEMENTS / (size - 1); ++i)
89 for (int j = 0; j < NR_ELEMENTS ; ++j)
90 {
91
92 C_recv [i][j] = 0.0;
93 for (int k = 0; k < NR_ELEMENTS ; ++k)
94 {
95
96 C_recv [i][j] = C_recv [i][j] + A_recv [i][k] * B[k][j

];
97 frob_norm_part = frob_norm_part + C_recv [i][j];
98
99 }

100
101 }
102
103
104 MPI_Send (C_recv , NR_ELEMENTS * (NR_ELEMENTS / (size - 1)), MPI_DOUBLE ,

0, 102 , MPI_COMM_WORLD);
105
106 fprintf (stdout , "rank = %d, partial sum = %lf\n", frob_norm_part , rank);
107 MPI_Reduce (& frob_norm_part , &frob_norm , 1, MPI_DOUBLE , MPI_SUM , 0,

MPI_COMM_WORLD);
108
109 }
110
111 MPI_Finalize ();
112
113 return 0;
114
115 }

Listing 2.20: Five point stencil (Serial version)

The following is a larger extension of the sinple matrix multiplication.
1 # include <stdio .h>
2 # include <stdlib .h>
3
4 # include "mpi.h"
5
6 # define NR_ELEMENTS 4
7
8 int main(int argc , char ** argv)
9 {

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

60/78

PfiT - The User’s Guide

10
11 double A[NR_ELEMENTS][NR_ELEMENTS];
12 double B[NR_ELEMENTS][NR_ELEMENTS];
13 double C[NR_ELEMENTS][NR_ELEMENTS];
14
15
16 MPI_Init (&argc , &argv);
17
18 int rank = 0, size = 0;
19 int err = 0;
20
21 double start = 0.0 , end = 0.0;
22 double frob_norm = 0.0 , frob_norm_part = 0.0;
23
24 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
25 MPI_Comm_size (MPI_COMM_WORLD , &size);
26
27 MPI_Datatype rowtype ;
28
29 if (size > NR_ELEMENTS)
30 MPI_Abort (MPI_COMM_WORLD , err);
31
32 double A_recv [NR_ELEMENTS / size][NR_ELEMENTS];
33 double C_recv [NR_ELEMENTS / size][NR_ELEMENTS];
34
35 start = MPI_Wtime ();
36
37 if (rank == 0)
38 {
39
40 for (int i = 0; i < NR_ELEMENTS ; ++i)
41 for (int j = 0; j < NR_ELEMENTS ; ++j)
42 {
43
44 A[i][j] = (double) (i + j); //(rand () % 1000);
45 B[i][j] = (double) (i + j); //(rand () % 1000);
46 C[i][j] = 0.0;
47
48 }
49
50 }
51
52 MPI_Type_contiguous (NR_ELEMENTS * (NR_ELEMENTS / size), MPI_DOUBLE , & rowtype

);
53 MPI_Type_commit (& rowtype);
54
55 MPI_Scatter (A, 1, rowtype , A_recv , 1, rowtype , 0, MPI_COMM_WORLD);
56 MPI_Bcast (B, NR_ELEMENTS * NR_ELEMENTS , MPI_DOUBLE , 0, MPI_COMM_WORLD);
57
58
59
60 for (int i = 0; i < NR_ELEMENTS / size; ++i)
61 for (int j = 0; j < NR_ELEMENTS ; ++j)

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

61/78

PfiT - The User’s Guide

62 C_recv [i][j] = 0.0;
63
64 for(int i = 0; i < NR_ELEMENTS / size; ++i)
65 for (int j = 0; j < NR_ELEMENTS ; ++j)
66 for (int k = 0; k < NR_ELEMENTS ; ++k)
67 {
68
69 C_recv [i][j] = C_recv [i][j] + A_recv [i][k] * B[k][j];
70 frob_norm_part = frob_norm_part + C_recv [i][j];
71
72 }
73
74
75 MPI_Reduce (& frob_norm_part , &frob_norm , 1, MPI_DOUBLE , MPI_SUM , 0,

MPI_COMM_WORLD);
76 MPI_Gather (C_recv , 1, rowtype , C, 1, rowtype , 0, MPI_COMM_WORLD);
77
78 end = MPI_Wtime ();
79
80 fprintf (stdout , " Runtime with %d processes : %lf !\n", size , end - start);
81
82 if (rank == 0)
83 {
84
85 FILE *fp = fopen (" output .txt", "w");
86 fprintf (fp , "%lf\n", frob_norm);
87 for(int i = 0; i < NR_ELEMENTS ; ++i)
88 {
89
90 for(int j = 0; j < NR_ELEMENTS ; ++j)
91 fprintf (fp , "%lf ", C[i][j]);
92
93 fprintf (fp , "\n");
94
95 }
96
97 }
98 fprintf (stdout , "\n");
99

100 MPI_Type_free (& rowtype);
101
102
103 MPI_Finalize ();
104
105 return 0;
106
107 }

Listing 2.21: Five point stencil (Serial version)

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

62/78

PfiT - The User’s Guide

2.3.7 C source 5 point stencil

The following code is the complete serial implementation of the instationary heat con-
duction equation which was diskretisized with the Finite Difference Method (equidistant
discretization in both directions). This code was originally taken from [6] and was
strongly modified for our needs (stack arrays to dynamic linear arrays (with appropriate
initialization procedures), initilization with explicit values out of file, store results into
file to visualize the data, etc.).

1 # include <cmath >
2 # include <fstream >
3 # include <iostream >
4 # include <iomanip >
5 # include <string >
6 # include <stdlib .h>
7
8 using namespace std;
9

10
11 //
12 // Define global variables
13
14 int Npoints = 0;
15 int MaxIterations = 0;
16
17 double x_begin = 0.0 , x_end = 0.0;
18 double dx = 0.0;
19 double dt = 0.0;
20 double tolerance = 0.0;
21 double start = 0.0 , end = 0.0;
22
23 string path_init_file ;
24 string path_output_file ;
25
26 double * restrict Aold;
27 double * restrict A;
28 double * restrict q;
29
30
31 //
32 // Declare functions
33
34 void read_init_file ();
35 double * create_and_init_matrix_Aold (int);
36 double * create_and_init_matrix_A (int);
37 double * create_and_init_matrix_q (int , const double , const double);
38 int JacobiSolver (int , double);
39 double evaluate_solution (double);
40 void output_solution ();
41
42
43 int main(int argc , char *argv [])
44 {

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

63/78

PfiT - The User’s Guide

45
46 //
47 // Read the init file with parameters
48 read_init_file ();
49
50 Npoints = ((x_end - x_begin) / dx) + 1;
51 dt = 0.25 * dx * dx;
52
53 const double M_PI_squared = -2.0 * M_PI * M_PI;
54 const double M_PI_dx = M_PI * dx;
55
56
57 //
58 // Create and init matrices A, Aold , q
59 double *Aold = create_and_init_matrix_Aold (Npoints);
60 double *A = create_and_init_matrix_A (Npoints);
61 double *q = create_and_init_matrix_q (Npoints , M_PI_squared , M_PI_dx);
62
63
64 //
65 // Solve linear equations , evaluate solution and output of the data
66
67 start = clock ();
68 cout << setprecision (7) << setiosflags (ios :: scientific);
69 int itcount = JacobiSolver (Npoints , dx);
70 end = clock ();
71 cout << "Time to solution (JacobiSolver): " << (end - start) / CLOCKS_PER_SEC

<< endl;
72
73 start = clock ();
74 double result = evaluate_solution (M_PI_dx);
75 end = clock ();
76 cout << "Time to solution (evaluate_solution): " << (end - start) /

CLOCKS_PER_SEC << endl;
77 cout << " Jacobi : Mean l2 error between approximated and exact solution is " <<

result / Npoints << " in " << itcount << " iterations " << endl;
78
79 start = clock ();
80 output_solution ();
81 end = clock ();
82 cout << "Time for output : " << (end - start) / CLOCKS_PER_SEC << endl;
83
84
85 //
86 // Deallocate memory
87
88 delete (Aold);
89 delete (A);
90 delete (q);
91
92
93 return 0;
94

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

64/78

PfiT - The User’s Guide

95 }
96
97
98 //
99 // Read the init file

100 void read_init_file ()
101 {
102
103 ifstream file_init ;
104 string filename = path_output_file + "init.dat";
105
106 file_init .open(filename . c_str () , ios :: in);
107 if (file_init == NULL)
108 {
109
110 cerr << "No init file was generated ! Exiting ... \n!" << endl;
111
112 exit(1);
113
114 }
115
116 file_init >> x_begin ;
117 file_init >> x_end ;
118 file_init >> dx;
119 file_init >> MaxIterations ;
120 file_init >> tolerance ;
121 file_init >> path_init_file ;
122 file_init >> path_output_file ;
123
124 file_init . close ();
125
126 return ;
127
128 }
129
130 //
131 // Create and initilaize the matrices A, Aold and q (q is source term)
132 double * create_and_init_matrix_Aold (int N)
133 {
134
135 Aold = new double [N * N];
136
137 //
138 // Initialize all elements to zero
139 for (int i = 0; i < N * N; ++i)
140 Aold[i] = 0.0;
141
142
143 //
144 // Initial conditions -- all zeroes
145 for(int i = 1; i < N - 1; ++i)
146 for(int j = 1; j < N - 1 ; ++j)
147 Aold[j + i * N] = 1.0;

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

65/78

PfiT - The User’s Guide

148
149
150 //
151 // Boundary Conditions -- all zeroes
152 for(int i = 0; i < N; i++)
153 for (int j = 0; j < N; ++j)
154 {
155
156 Aold[j] = 0.0;
157 Aold[j + N * (N - 1)] = 0.0;
158
159 Aold[i * N] = 0.0;
160 Aold[(N - 1) + N * i] = 0.0;
161
162 }
163
164 return Aold;
165
166 }
167
168 double * create_and_init_matrix_A (int N)
169 {
170
171 A = new double [N * N];
172
173 //
174 // Initialize all elements to zero
175 for (int i = 0; i < N * N; ++i)
176 A[i] = 0.0;
177
178 //
179 // Initial conditions -- all zeroes
180 for(int i = 1; i < N - 1; ++i)
181 for(int j = 1; j < N - 1 ; ++j)
182 A[j + i * N] = 1.0;
183
184 //
185 // Boundary Conditions -- all zeroes
186 for(int i = 0; i < N; i++)
187 for (int j = 0; j < N; ++j)
188 {
189
190 A[j] = 0.0;
191 A[j + N * (N - 1)] = 0.0;
192
193 A[i * N] = 0.0;
194 A[(N - 1) + N * i] = 0.0;
195
196 }
197
198 return A;
199
200 }

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

66/78

PfiT - The User’s Guide

201
202 double * create_and_init_matrix_q (int N, const double M_PI_squared , const double

M_PI_dx)
203 {
204
205 q = new double [N * N];
206
207 //
208 // setting up an additional source term
209 for(int i = 0; i < N; ++i)
210 for(int j = 0; j < N; ++j)
211 q[j + i * N] = M_PI_squared * sin(M_PI_dx * i) * sin(M_PI_dx * j);
212
213 return q;
214
215 }
216
217
218
219 //
220 // Function for solving the linear equations with the iterative Jacobi solver
221 // (implement the 5 point stencil)
222
223 int JacobiSolver (int N, double dx)
224 {
225
226 double D = dt / (dx * dx) ;
227
228 //
229 // Start the iterative solver
230 for (int k = 0; k < MaxIterations ; k++)
231 {
232
233 for(int i = 1; i < N - 1; ++i)
234 for(int j = 1; j < N - 1; ++j)
235 A[j + i * N] = dt * q[j + i * N]
236 + Aold[j + i * N]
237 + D * (Aold[(j + 1) + i * N]
238 + Aold[j + (i + 1) * N]
239 - 4.0 * Aold[j + i * N]
240 + Aold[(j - 1) + i * N]
241 + Aold[j + (i - 1) * N]);
242
243 for(int i = 0; i < N; ++i)
244 for(int j = 0; j < N; ++j)
245 Aold[j + i * N] = A[j + i * N];
246
247 }
248
249 return MaxIterations ;
250
251 }
252

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

67/78

PfiT - The User’s Guide

253
254 //
255 // Function for evaluating the approximated solution (" comparison " between
256 // approximated and exact solution)
257 double evaluate_solution (double M_PI_dx)
258 {
259
260 double ExactSolution = 0.0;
261 double sum = 0.0;
262
263
264 for(int i = 0; i < Npoints ; i++)
265 {
266
267 for(int j = 0; j < Npoints ; j++)
268 {
269
270 ExactSolution = -sin(M_PI_dx * i) * sin(M_PI_dx * j);
271 sum += fabs(Aold[j + i * Npoints] - ExactSolution);
272
273 }
274
275 }
276
277 return sqrt(sum) ;
278
279 }
280
281
282 //
283 // Output of the resulting matrix to file (for visualization)
284 void output_solution ()
285 {
286
287 ofstream file_out ;
288 string filename = path_output_file + "test.mat";
289
290 file_out .open(filename . c_str () , ios :: out);
291 if (file_out == NULL)
292 {
293
294 cerr << "No output file was generated ! Exiting ... !\n" << endl;
295 exit(1);
296
297 }
298
299 file_out << setprecision (5) << setiosflags (ios :: scientific);
300 for (int i = 0; i < Npoints ; ++i)
301 {
302
303 for (int j = 0; j < Npoints ; ++j)
304 file_out << Aold[j + i * Npoints] << " ";
305

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

68/78

PfiT - The User’s Guide

306 file_out << endl;
307
308 }
309
310 file_out . close ();
311
312 return ;
313
314 }

Listing 2.22: Five point stencil (Serial version)

The resulting results will be stored into a file, which content can be visualzied for example
with matlab or octave. With the following lines of matlab/octave code the visualization
can be done.
Z =load(’test.mat ’, ’-ascii ’)
x = linspace (1, 251 , 251);
y = linspace (1, 251 , 251);
[X, Y] = meshgrid (x, y);
surf(X, Y, Z);

Listing 2.23: Code for plotting the data of the Jacobi iteration

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

69/78

PfiT - The User’s Guide

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

70/78

Bibliography

[1] Introduction to High Performance Computing for Scientists and Engineers, CRC
Press, 2010.

[2] Eijkhout, V.: Introduction to High-Performance Scientific Computing.

[3] Severance, C.; Dowd, K: High Performance Computing.

[4] Püschel, M: How to write fast numerical code.

[5] Supalov, A.; Semin, A.; Klemm, M.; Dahnken, C.: Optimizing HPC Applications
with Intel® Cluster Tools, Apress Open, 2014.

[6] Hjorth-Jensen, M.: Computational Physics, Lecture Notes Fall 2015 (August 2015),
University of Oslo

[7] OpenACC Resources

[8] OpenMP books

[9] OpenMP tutorials

[10] Gropp, W.; Lusk, E.; Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-Passing Interface, third edition, The MIT press, 2014.

[11] MacDonald, N. et al: Writing Message Passing Parallel Programs in MPI, Version
1.8.2, Edinburgh Parallel Computing Centre (EPCC), University of Edinburgh,
www source: https://www.researchgate.net/publication/239179288_Writing_Mes-
sage_Passing_Parallel_Programs_with_MPI/link/00b495286755ac55f1000000/-
download (last access date: 2019-12-29).

71

http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
https://cnx.org/contents/u4IVVH92@5.2:bEZZukPR@1/Introduction-to-the-Connexions-Edition
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=39DFCA775321BA00AAC9E76316BD0EAE?doi=10.1.1.83.999&rep=rep1&type=pdf
https://link.springer.com/book/10.1007%2F978-1-4302-6497-2
https://link.springer.com/book/10.1007%2F978-1-4302-6497-2
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/src/pde/Programs/cpp/diffusion2dim.cpp
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/src/pde/Programs/cpp/diffusion2dim.cpp
https://www.openacc.org/resources
https://www.openmp.org/resources/openmp-books/
https://www.openmp.org/resources/tutorials-articles/

PfiT - The User’s Guide

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

72/78

Appendix A

Example PDF Report

73

ProfiT-HPC Report
Report for JobID: 1352076
Time of generation: 31/03/2020 10:32:25 -

ProfiT-HPC Report

Job Overview: Node Information:

Job-ID: 1352076 CPU model:
User name: random.user Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
Queue: medium-fmz Memory per node: 68 GB
Number of nodes: 13 Sockets per node: 2
Requested cores: 40 Cores per socket: 10
Requested time: 24.00 h Threads per core: 1
Used time: 1.42 h
Time of job submission: 04/10/2019 06:48:09
Time of job start: 04/10/2019 08:47:24
Time of completion: 04/10/2019 10:12:20

Node list: gwdd[027,032-033,040-041,043-047,063,067]
gwdd[070]

Global Summary of Resource Usage

Recommendations:

No problems detected!
Good work!

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

1/5

ProfiT-HPC Report
Report for JobID: 1352076
Time of generation: 31/03/2020 10:32:25 -

Node Distributions

*Boxplot shows minimum, first quartile, median, third quartile, and maximum

Metric Units Min. Max. StdDev. Avg. Boxplot*

CPU usage % 99.88 100.00 0.03 99.99

Memory MaxRSS GB 0.42 5.31 1.58 1.76

Memory AveRSS GB 0.41 5.02 1.47 1.67

Memory Swap Bytes 0.00 0.00 0.00 0.00

I/O Read Size GB 0.00 13.86 4.74 3.20

I/O Write Size GB 0.00 7.12 2.41 1.64

I/O Read Count *1.E-03 2.83 34.19 10.46 10.09

I/O Write Count *1.E-06 0.23 1.81 0.40 0.49

CPU time user h 1.40 11.22 3.27 4.33

CPU time system m 0.05 2.92 0.84 0.66

CPU time idle s 0.00 0.00 0.00 0.00

CPU time iowait s 0.00 0.00 0.00 0.00

Max IB receive rate MB/s 2.01 206.85 87.03 95.90

Max IB transmit rate MB/s 2.01 203.86 87.68 92.51

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

2/5

ProfiT-HPC Report
Report for JobID: 1352076
Time of generation: 31/03/2020 10:32:25 -

Node Timeseries Plots

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

3/5

ProfiT-HPC Report
Report for JobID: 1352076
Time of generation: 31/03/2020 10:32:25 -

Node Timeseries Plots

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

4/5

ProfiT-HPC Report
Report for JobID: 1352076
Time of generation: 31/03/2020 10:32:25 -

Global Summary Definitions:
The global summary bar chart gives information about how resources are being used or how far they are from a maximum
value. Each bar represents the comparison of two values, which are listed to the right of the diagram.

Walltime: The time duration between time of job start until time of job completion. It is also referred to as used time. This
value is compared in the bar chart with the requested time.

CPU usage: Average of the CPU usages (see glossary) of all job‘s processes on allocated nodes. It is compared in the bar
chart to the value 100% or to the highest value, if larger that 100%.

Memory sum: Sum of the maximum memories (RAM) used by the job on allocated nodes. It is compared in the graph to the
sum of the total RAM memory of the allocated nodes.

Swap sum: Measure of how much swap space on a disk had to be used because of full physical RAM memory.

Network: Compares maximum node traffic (Infiniband), the maximum amount received and the maximum amount
transmitted per node.

I/O (Input/Output): Compares the amount of read input to the amount of write output.

Node Distribution Definitions:
Bar graphs containing node distribution information. Overall values are computed for each node. Then the minimum,
maximum, average and standard deviation of these values are computed.

CPU usage: Time average of the sum of CPU usages (see glossary) of all job‘s processes on each node divided by the
number of cores on that node.

Memory MaxRSS: Maximum of the sum of the RSS (see glossary) values of each process of the job. It refers to the
maximum amount of physical memory held by a processes for the job.

Memory AveRSS: Average of the sum of the RSS (see glossary) values of each process of the job.

Memory Swap: Indicates how much disk space was needed for execution of any processes of the job.

I/O Read or Write Size: Amount of input read or output written by job‘s processes on the node.

I/O Read or Write Count: Count of number of read or write requests of job‘s processes on the node.

Max IB receive rate: maximum (high water mark) of infiniband receiving rate of a node.

Max IB tranfer rate: maximum (high water mark) of infiniband transmitting rate of a node.

CPU time: -user Sum of amount of time CPU was executing user instructions for the job‘s processes. -system Sum of
amount of time CPU was executing system instructions for the job‘s processes. -idle Sum of amount of time CPU was idle
while executing job‘s processes. -iowait Sum of amount of time CPU was waiting for I/O for the job‘s processes.

Timeseries:
Node CPU usage: Sum of CPU usages of all cores on each allocated node divided by the number of cores allocated on that
node for the job.

Node Load1: Average values of load of the last minute of the node; see also glossary.

CPU usage: Average of CPU usages of all job‘s processes on the node.

Memory RSS: Sum of the job‘s process RSS (see glossary) on the node.

Sum Read Counts: Sum of the job‘s read requests on the node.

Sum Write Counts: Sum of the job‘s Write requests on the node.

IB max. receive rate: Maximum infiniband receiving rate during job on the node.

IB max. transmit rate: Maximum infiniband transmitting rate during job on the node.

Glossary:
CPU: Central Processing Unit
CPU usage: Percentage of time for a given time increment, for which a CPU was utilized by a process or vice versa
Load1: Load average for last 1 minute; a measure of how processor cores are being used in counts, where 1 refers to full
use of one core
RAM: Random Access Memory; physical memory
RSS: The Resident Set Size; the amount of physical memory (RAM) held by a process
Swap: How much disk space was utilized during process execution instead of RAM

Definition of Variables

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
KO 3394/14-1, OL 241/3-1, RE 1389/9-1, VO 1262/1-1, YA 191/10-1

5/5

	Introduction
	User's Guide
	Explanation of the metrics of the reports
	Text report
	PDF report

	Sources of metrics
	Best practices for users
	Best practices
	General recommendations and checklists
	Using accelerators(OpenACC)
	OpenMP
	CUDA
	MPI
	C source 5 point stencil

	Bibliography

	Example PDF Report

